【Openjudge】一元三次方程求解


总时间限制: 
1000ms 
内存限制: 
65536kB
描述

有形如:ax3+bx2+cx+d=0  这样的一个一元三次方程。

给出该方程中各项的系数(a,b,c,d  均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。

输入
一行,包含四个实数a,b,c,d,相邻两个数之间用单个空格隔开。
输出
一行,包含三个实数,为该方程的三个实根,按从小到大顺序排列,相邻两个数之间用单个空格隔开,精确到小数点后2位。
样例输入
1.0 -5.0 -4.0 20.0
样例输出
-2.00 2.00 5.00

根据题目描述,求根的过程即为二分,只要f(l)*f(r)<=0,其间必有根。
由于一定存在三个根,且两根的距离大于1,故从左往右,依次扫描、二分。

注意:因为此题要用到浮点,注意函数参数为Double型。
我就这么Wa了很久大哭大哭大哭

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std;

#define MAXN
#define MAXM
#define INF 0x3f3f3f3f
#define LL long long

double a,b,c,d;

double f(double x)
{
	return a*x*x*x+b*x*x+c*x+d;
}

double dfs(double l,double r)
{
	if(r-l<=0.001)return l;
	
	double mid=(l+r)/2;
	if(f(l)*f(mid)<=0)return dfs(l,mid);
	else return dfs(mid,r);
}

int main()
{
	scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
	
	double ans[5];int cnt=0;
	for(int i=-100;i<100;++i)
	{
		double l=i,r=i+1;
		if(f(l)==0)
			ans[++cnt]=l;
		else if(f(l)*f(r)<0)
			ans[++cnt]=dfs(l,r);
		
		if(cnt>=3)break;
	}
	
	printf("%0.2lf %0.2lf %0.2lf\n",ans[1],ans[2],ans[3]);
}


 
  
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值