描述
给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * … * an,并且1 < a1 <= a2 <= a3 <= … <= an,问这样的分解的种数有多少。注意到a = a也是一种分解。
关于输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数a (1 < a < 32768)
关于输出
n行,每行输出对应一个输入。输出应是一个正整数,指明满足要求的分解的种数
例子输入
2
2
20
例子输出
1
4
程序
#include <iostream>
#include <cstring>
#include<string>
#include<stack>
#include<algorithm>
#include<set>
#include<iomanip>
#include<queue>
#include<vector>
using namespace std;
int get(int num, int s)
{
int sum = 1;
for (int i = s; i*i <= num; i++)
{
if (num % i == 0)
{
sum = sum + get(num / i, i);
}
}
return sum;
}
int main()
{
int n;
cin >> n;
while (n--)
{
int num;
cin >> num;
cout << get(num, 2) << endl;
}
}
sum = sum + get(num / i, i);
这是核心的一步。在这里,递归的时候,以20为例,首先是从小到大找它的因数,那么我们在找因数的因数的时候,就只需要找大数里面的因数就可以了。比如,20的因数,首先找到了2,然后我们需要找10的因数;接着,我们找到了4和5,为什么我们不需要再找4的因数的呢?因为4的因数肯定是2的因数,2已经找过了,10里面肯定有一个数,保证2*2=4,所以小数的因数一定在前面已经找过。
879

被折叠的 条评论
为什么被折叠?



