matplotlib plot 绘图 实现样式和标注动态显示(根据鼠标位置)

# qt5模式才有交互效果
%matplotlib qt5
import matplotlib.pyplot as plt
import numpy as np
# 解决汉字乱码
import matplotlib as mpl
# 字体会按照列表依次从电脑中查找,直到找到
plt.rcParams['font.family'] = ['Arial Unicode MS','Microsoft YaHei','SimHei','sans-serif']
plt.rcParams['axes.unicode_minus'] = False  #解决黑体符号乱码
# 样式美化,可删除(实际接了个背景格子)
# plt.style.use('seaborn')

fig, ax = plt.subplots()
x = np.array([1,2,3,4])
y = np.array([4,7,6,9])
ax.scatter(x,y,color='green')



def call_back(event):
    '''
    desc:
        鼠标移动触发的回调函数
        如果点在更换颜色时出现坐标轴抖动,可以通过限制xmin xmax ymin ymax来锁定坐标轴范围
    param:
        event : 指下面的motion_notify_event(鼠标移动)事件
        event.xdata : 事件(鼠标)在图的坐标系统中的x轴坐标
        event.ydata : 事件(鼠标)在图的坐标系统中的y轴坐标
        distance : 这里为了减少运算量直接使用了1范数距离
        0.2        需要根据实际情况修改
    return:
        None
    '''
    try:
        distance0 = list(abs(x - event.xdata) + abs(y - event.ydata))  # 注意:这里会出现当鼠标移出绘图区域的时候会报错,所以try一下
        distance = min(distance0)
        if distance < 0.2:  # 这里的0.2是根据比例尺自己写的,需要根据实际情况修改
            # 这里的scatter相当于在原图的基础上添加散点(原散点保留不变)
            inde = distance0.index(distance)  # inde distance最小值对应的x,y中的索引值
            # 恢复原图颜色
            ax.scatter(x,y,color='green')
            # 更新鼠标最近点颜色
            ax.scatter(x[inde],y[inde],c='white',edgecolors='red') # edgecolors : 边缘颜色变为红色,填充颜色变为白色,覆盖之前的颜色,c和color参数是一回事
            # 添加标注
            plt.text(
                x[inde],
                y[inde],
                f'({x[inde]},{y[inde]})',  # 显示文本内容
                fontsize = 10,  # 文字大小
            ) 
            # 更新画板,否则上面的效果都出不来
            fig.canvas.draw()
    except:
        pass

  

# 鼠标单击(触发)事件
# fig.canvas.mpl_connect('button_press_event', call_back)
# 鼠标释放事件
# fig.canvas.mpl_connect('button_release_event', call_back)
# 鼠标移动事件
fig.canvas.mpl_connect('motion_notify_event', call_back)

plt.show()

效果图:

<think>好的,用户想知道如何在Python中使用matplotlib显示图像绘图。我需要先整理一下相关的步骤示例代码。首先,显示图像的话,matplotlib的imreadimshow函数应该用得上。然后绘图部分,折线图、散图、柱状图这些常见图表可能需要分别说明。得确保代码示例正确,并且符合用户提供的引用中的格式,比如中文字体设置,避免乱码。 用户提供的引用里提到安装numpymatplotlib,所以第一步可能需要先安装这些库。然后,显示图像的步骤包括读取图片、创建子图、显示图像、关闭坐标轴。这部分需要引用中的信息,比如引用[2]里的字体设置,防止中文乱码。可能还需要提到如何保存图像,比如plt.savefig。 关于绘图,引用[2]引用[3]有折线图读取csv的例子。折线图的代码示例已经有了,可能需要调整一下,加上必要的注释。同时,用户可能还需要其他类型的图表,比如散图、柱状图,所以应该包括这些的示例。要确保代码中的中文标签正确显示,使用FangSong字体,如引用[2]所示。 另外,用户的问题里提到了显示图像绘制图形两个部分,所以需要分两部分回答。每个部分都要有步骤说明代码示例。注意代码块用三个反引号包裹,并注明语言是python。最后生成相关问题,可能涉及其他图表类型、样式调整或数据源处理,比如csv文件。 需要检查LaTeX格式是否正确,但用户的问题没有涉及数学公式,所以可能不需要。不过按照系统指令,如果有行内公式要用$...$。但当前问题不涉及,所以可能不需要。但生成的相关问题如果有的话需要注意。 最后,引用标识要正确添加。比如在提到安装库的时候,引用[1]提到安装numpymatplotlib,所以在这个部分末尾加上[^1]。在设置中文字体使用绘图函数时,引用[2][3],需要正确标注。 现在,组织内容:首先安装库,然后显示图像,再绘制各种图形,每个部分都有步骤代码,最后相关问题。确保每个代码示例正确,并且注释清晰。同时,注意用户可能遇到的常见问题,如图像路径错误、中文乱码等,在步骤中提前说明解决方法,比如设置字体。</think>在Python中使用`matplotlib`显示图像绘制图形的步骤如下: --- ### 一、显示图像 1. **安装依赖库** 确保已安装`numpy``matplotlib`: ```bash pip install numpy matplotlib ``` 2. **读取并显示图像** ```python import matplotlib.pyplot as plt # 读取图像(替换为实际路径) image = plt.imread('example.jpg') # 创建子图并显示图像 plt.subplot(1, 1, 1) plt.imshow(image) plt.axis('off') # 关闭坐标轴 plt.title('示例图像', fontproperties='FangSong') # 设置中文字体 plt.show() ``` --- ### 二、绘制图形(以折线图为例) 1. **基础折线图** ```python import numpy as np from matplotlib import pyplot as plt # 设置中文字体 plt.rcParams['font.sans-serif'] = ['FangSong'] # 生成数据 x = np.arange(0, 1, 0.05) y = np.sin(2 * np.pi * x) # 绘制图形 plt.plot(x, y, 'b--*', label='正弦曲线') plt.title('正弦函数示例') plt.xlabel('x轴') plt.ylabel('y轴') plt.legend(loc='best') # 自动选择图例位置 plt.show() ``` [^2] 2. **其他常见图表** - **散图**: ```python plt.scatter(x, y, color='red', marker='o') plt.title('散图示例') ``` - **柱状图**: ```python categories = ['A', 'B', 'C'] values = [10, 20, 15] plt.bar(categories, values, color='skyblue') ``` --- ### 三、保存图像 ```python plt.plot(x, y) plt.savefig('output.png', dpi=300) # 保存为PNG格式 plt.close() # 关闭当前布 ``` ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas2143

您的打赏是我的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值