1、什么是RAG技术?
RAG的全称是Retrieval-Augmented Generation,称为检索增强生成技术,可以理解为给大模型安装一个“外接大脑”,RAG是这样工作的:当大模型收到一个问题时,它不会直接凭自己的记忆回答,而是会:
a.先从一个海量的、可更新的知识库(外接大脑)中查找相关信息
b.然后把找到的信息和问题一起交给大模型
c.最后让大模型基于这些准确的信息生成答案
2、为什么需要RAG技术?
大模型虽然强大,但存在五个问题:
知识过时:大模型的训练数据有截止日期,无法获取最新信息。GPT-4的知识截止到2023年4月,之后发生的事情它一无所知。
缺乏专业知识:通用模型在医疗、法律等专业领域深度不够,难以提供可靠答案。
凭空捏造:当模型不确定时,可能会“自信地”编造答案,产生所谓的“幻觉”。
数据泄露: GPT-2是通过数据攻击大模型获取个人敏感数据。
训练成本: 模型的参数规模不断攀升,需要更多的训练资源。
RAG技术恰好解决了这些问题:
知识实时更新:外接知识库可以随时更新,保证答案的时效性专业精准:可接入专业领域的数据库,提供权威答案有据可查:每个答案都有来源依据,可追溯可验证
数据更安全: 个人私有数据得到保证
训练成本少: 早在2021年,便于科学家论文证明利用RAG系统,大模型训练成本大大减少
3、RAG的工作流程
RAG的工作过程可以分为三个清晰的步骤:
检索(Retrieval) - 当用户提出问题时,RAG系统首先从外部知识库中检索与问题相关的信息。这个过程类似于使用搜索引擎,找到最相关的文档片段。
增强(Augmentation) - 将检索到的相关信息与用户原问题组合成一个新的、 enriched 的提示词。例如:“基于以下资料{检索到的信息},请回答:{用户原问题}”。
生成(Generation) - 将这个增强后的提示词输入大模型,让模型基于提供的资料生成最终答案。
整个过程通常只需几秒钟,用户感受到的是一个直接、准确且有针对性的答案。
4、RAG的优缺点
RAG的优势:
准确性高:基于最新、最可靠的信息生成答案,降低幻觉
成本低廉:相比重新训练模型,更新知识库的成本几乎可以忽略不计
透明度高:可以提供答案的来源和依据,增强可信度
易于实现:技术相对成熟,有多种开源框架可用
**模型可解释性:**RAG具有一定程度的可解释性,可以理解模型是如何生成回答的
RAG的挑战:
依赖检索质量:如果检索不到相关信息,系统无法给出好答案
上下文长度限制:大模型有输入长度限制,可能无法处理过多检索结果
延迟问题:检索需要时间,会增加整体响应延迟
依赖于现有的知识库:需要专业的且大规模的知识库
5、RAG的应用场景
RAG技术正在各行各业发挥重要作用:
智能客服:接入最新的产品文档和FAQ,提供准确客服咨询
企业知识管理:构建企业专属知识库,员工可随时查询公司制度、流程
医疗辅助:结合最新医学文献,为医生提供诊断建议和治疗方案参考
法律咨询:接入法律条文和判例库,提供初步法律意见
教育领域:基于教材和最新研究资料,为学生提供个性化辅导
内容创作:帮助作者查找资料,生成内容翔实的文章
6、RAG的范式演变
RAG技术本身也在不断进化,经历了几个阶段的演变:
初级RAG(Naive RAG):简单的检索-读取流程,存在检索不准确、生成内容与查询不匹配等问题。
高级RAG(Advanced RAG):引入优化技术,包括更精细的检索前处理(更好的文本分割、索引优化)、检索过程优化(更好的检索策略和排序算法)以及检索后优化(对检索结果的重排序和过滤)。
模块化RAG(Modular RAG):将RAG系统拆分为多个可替换的模块,如搜索模块、记忆模块、检索模块和重排序模块等。这种架构更加灵活,可以根据不同需求定制解决方案。
大模型RAG:主导的系统可以通过Agent来实现,Agent可以看作LLM于工具集合(如搜索引擎、数据库、网站导航)的集成。
多模态RAG:是RAG系统的扩展,可以处理不同模态的数据,如文本、图片、音频、视频。生成的结构也更加丰富和多样化。
RAG技术不是要取代大模型,而是让大模型变得更加可靠、实用。它解决了大模型“一本正经地胡说八道”的问题,让AI能够基于事实、依据最新资料给出回答。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发