原文链接: 本子里的数学题....
上一篇: vue 十道题和答案
下一篇: vue3 teleport 类似 Portal 转移dom和组件
日本小学生nb...
自认为数学还行, 但第一道题构造估计很难想出来, 第二道题基本上初三就行了
.... 我太菜了
https://zhuanlan.zhihu.com/p/235466394
第一题求解四次方程
第二题给定条件求最大最小值
知乎上的答案
1) 解 令 [公式] ,得左式 [公式] ,故 [公式] 。因此将等式两边同时除以 [公式] ,得 [公式] 。由完全平方公式知 [公式] ,故令 [公式] ,则原式化为 [公式] ,得 [公式] 。
现在,我们分别把这两个根代入 [公式] 中。
当 [公式] 时,显然 [公式] ,由均值不等式(没错,均值不等式能对两个负数的加法使用来求最大值喵)知 [公式] ,等号当且仅当 [公式] ,即 [公式] 时成立。
当 [公式] 时,因为 [公式] ,两边同乘以 [公式] 整理得 [公式] ,解得 [公式] 。
经检验,这三个根都是原方程的根。所以该方程的解集为 [公式] 。 [公式]
2) 解 先求最小值。由Cauchy不等式知 [公式] ,故 [公式] 。又令 [公式] , [公式] ,得 [公式] ,故最小值为 [公式] 。
再求最大值。将 [公式] 代入得 [公式] ,这是一个开口向上的二次函数,故最大值在 [公式] 或 [公式] 取到。当 [公式] 时,二次函数的值为 [公式] ;当 [公式] 时,二次函数的值为 [公式] 。故最大值为 [公式] ,此时 [公式] , [公式] 。
综上: [公式] 的最大值为 [公式] ,当 [公式] 时取到;最小值为 [公式] ,当 [公式] 时取到。 [公式]
不过对于第二道题也可以使用数形结合的方式
数形结合比不等式更加直观易懂一点