本子里的数学题....

原文链接: 本子里的数学题....

上一篇: vue 十道题和答案

下一篇: vue3 teleport 类似 Portal 转移dom和组件

日本小学生nb...

自认为数学还行, 但第一道题构造估计很难想出来, 第二道题基本上初三就行了

.... 我太菜了

up-6e06fbeeaa31b31c9e53b7572cccdccfc22.png

https://zhuanlan.zhihu.com/p/235466394

第一题求解四次方程

第二题给定条件求最大最小值

up-1757bb498c38de94eae931e2cd810340cd8.png

知乎上的答案

1) 解 令 [公式] ,得左式 [公式] ,故 [公式] 。因此将等式两边同时除以 [公式] ,得 [公式] 。由完全平方公式知 [公式] ,故令 [公式] ,则原式化为 [公式] ,得 [公式] 。

现在,我们分别把这两个根代入 [公式] 中。

当 [公式] 时,显然 [公式] ,由均值不等式(没错,均值不等式能对两个负数的加法使用来求最大值喵)知 [公式] ,等号当且仅当 [公式] ,即 [公式] 时成立。

当 [公式] 时,因为 [公式] ,两边同乘以 [公式] 整理得 [公式] ,解得 [公式] 。

经检验,这三个根都是原方程的根。所以该方程的解集为 [公式] 。 [公式]

2) 解 先求最小值。由Cauchy不等式知 [公式] ,故 [公式] 。又令 [公式] , [公式] ,得 [公式] ,故最小值为 [公式] 。

再求最大值。将 [公式] 代入得 [公式] ,这是一个开口向上的二次函数,故最大值在 [公式] 或 [公式] 取到。当 [公式] 时,二次函数的值为 [公式] ;当 [公式] 时,二次函数的值为 [公式] 。故最大值为 [公式] ,此时 [公式] , [公式] 。

综上: [公式] 的最大值为 [公式] ,当 [公式] 时取到;最小值为 [公式] ,当 [公式] 时取到。 [公式]

不过对于第二道题也可以使用数形结合的方式

数形结合比不等式更加直观易懂一点

up-c9643de89568b0984f713d091e342e24cad.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值