hdu3123 大数阶乘求和取模

本文介绍了解决HDU3123大数阶乘求和取模问题的方法。该问题要求计算(0!+1!+...+n!)%m的结果,其中n可达10^100,m的阶乘为1000000。文章分享了一个技巧,当n>=m时,n!%m==0,因此只需计算到m即可。
摘要由CSDN通过智能技术生成

原文链接: hdu3123 大数阶乘求和取模

上一篇: hdu 1042 大数阶乘

下一篇: python 小技巧

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3123

题目的意思很是简单,给n,m,求(0!+1!+2!+......n!)%m的结果,n的范围为10^100,而m的阶乘为1000000。

我们可以看到,n的范围是比较大的,这样的数据范围会吓退很多人的。一开始,我也被吓退了。

不过,经过做这道题,我们发现,对于许多的,阶乘问题,都是不需要计算出阶乘的结果的。而是应用一些小的技巧,直接化解成小数阶乘就是可以做的。

比如这道题,我们可以发现,m的值是比较小的,而且我们知道,当n>=m的时候,n!%m==0,是一个恒等的。所以:当n>>m  的时候,我们只需要计算到m即可。

时间复杂度为O(n)的。可以满足时间需求。n^2的会TLE

t保存i!对m的取模结果

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>

#define LL long long
int const MAX = 1e6 + 1;
int const INF = 1 << 30;
double const EPS = 0.00000001;
using namespace std;

LL T, n, m, ans, len, k, t;
char a[10001];
int main(){
    scanf("%lld", &T);
    while (T--){
        scanf("%s %lld", a, &m);
        //0!=1
        ans = 1;
        len = strlen(a);

        //取前7位数,转化为10进制n
        n = 0, k = 1;
        for (int i = len - 1; i >= 0 && len - i <= 7; i--){
            n += (a[i] - '0') * k;
            k *= 10;
        }
        // printf("n=%d\n", n);
        t = 1;
        for (int i = 1; i <= n && i < m; i++){
            t = (t * i) % m;
            ans = (ans + t) % m;
        }

        printf("%lld\n", ans % m);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值