原文链接: 01串 斐波那契数列
上一篇: 聪明的kk 动态规划 数塔
下一篇: 阶乘之和
01串
http://acm.nyist.net/JudgeOnline/problem.php?pid=252
时间限制:1000 ms | 内存限制:65535 KB
难度:2
输入
第一行有一个整数n(0<n<=100),表示有n组测试数据;
随后有n行,每行有一个整数m(2<=m<=40),表示01串的长度;
输出
输出不含有“11”子串的这种长度的01串共有多少个,占一行。
样例输入
2 2 3
样例输出
3 5
描述
ACM的zyc在研究01串,他知道某一01串的长度,但他想知道不含有“11”子串的这种长度的01串共有多少个,他希望你能帮帮他。
注:01串的长度为2时,有3种:00,01,10。
思路:
设f(i) 表示长度为i且满足要求的串的个数
f(2)=3,f(3)=5
对于i>3的f(i),其中所含串的结尾只有三种可能 01 00 10 且:
一,f(i)中以1结尾的串的个数与f(i-1)中以0结尾的串的个数相同,因为只有f(i-1)中以0结尾的串才可以补0
二,f(i)中以0为结尾的串的个数等于f(i-1),即f(i-1)后面加0即可
f(i) = f(i-1)中以1结尾的串的个数+2*f(i-1)中以0结尾串的个数
=f(i-1)+f(i-1)中以0结尾的串的个数
=f(i-1)+f(i-2)
我的代码
#include <stdio.h>
#define MAX 41
int data[MAX];
int main(int argc, char *argv[])
{
int T,n,i;
scanf("%d",&T);
data[2]=3;
data[1]=2;
data[0]=1;
for(i=3;i<MAX;i++)
data[i]=data[i-1]+data[i-2];
while(T--){
scanf("%d",&n);
printf("%d\n",data[n]);
}
return 0;
}
题目推荐
#include <stdio.h>
#define __int64 long long
int main()
{
__int64 f[41] = { 0 , 0 , 3 , 5 } ;
int Total , i ;
for( i = 4 ; i < 41 ; ++i )
f[i] = f[i-1] + f[i-2] ;
scanf("%d", &Total ) ;
while( Total-- )
{
scanf("%d", &i ) ;
printf("%d\n", f[i] ) ;
}
return 0 ;
}