【神经网络】07 - Sequential小实战

07 - Sequential小实战

概念

在 PyTorch 中,Sequential 是一个容器(container)类,用于构建神经网络模型。它允许你按顺序(sequential)添加不同的网络层,并将它们串联在一起,形成一个网络模型。这样做可以方便地定义简单的前向传播过程,适用于许多基本的网络结构。

Sequential 的优点之一是其简洁性和易读性,特别适用于简单的网络结构。然而,对于更复杂的模型,可能需要使用 PyTorch 的其他模型构建方式,如使用 nn.Module 基类自定义网络结构,以满足更灵活的需求。

img

这个神经网络输入为3通道的32x32的图像,首先通过5x5卷积核的卷积,然后2x2池化窗口的最大池化,接着5x5卷积核的卷积,然后2x2池化窗口的最大池化。一共持续三轮,最好得到的特征图为64通道4x4的图像,然后使用flatten展平为一维张量,最后通过64输入10输出的全连接层得到输出。

img

把out,in,dilation(默认为1),kernel_size代入第一个H_out式子算出stride和padding。

示例

img

import torch
from torch import nn


class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        # 这里新建了一堆类的内部变量
        self.conv1 = nn.Conv2d(3, 32, 5, padding=2)
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(32, 32, 5, padding=2)
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(32, 64, 5, padding=2)
        self.maxpool3 = nn.MaxPool2d(kernel_size=2)
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(1024, 64)
        self.linear2 = nn.Linear(64, 10)

    # 前向传播
    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


net = MyNet()
print(net)
# 简单检验神经网络
input = torch.ones(64, 3, 32, 32)
output = net(input)
print(output.shape)

按照经典CNN图搭建了一个CNN模型。

import torch
from torch import nn
from torch.nn import Sequential
from torch.utils.tensorboard import SummaryWriter


class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        # 使用Sequential简化神经网络层
        self.model1 = Sequential(
            nn.Conv2d(3, 32, 5, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(32, 32, 5, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(32, 64, 5, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    # 前向传播
    def forward(self, x):
        x = self.model1(x)
        return x


net = MyNet()
print(net)
# 简单检验神经网络
input = torch.ones(64, 3, 32, 32)
output = net(input)
print(output.shape)

writer = SummaryWriter("../logs_seq")
writer.add_graph(net, input)
writer.close()

使用tensorboard查看这神经网络。

imgimg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值