07 - Sequential小实战
概念
在 PyTorch 中,Sequential
是一个容器(container)类,用于构建神经网络模型。它允许你按顺序(sequential)添加不同的网络层,并将它们串联在一起,形成一个网络模型。这样做可以方便地定义简单的前向传播过程,适用于许多基本的网络结构。
Sequential
的优点之一是其简洁性和易读性,特别适用于简单的网络结构。然而,对于更复杂的模型,可能需要使用 PyTorch 的其他模型构建方式,如使用 nn.Module
基类自定义网络结构,以满足更灵活的需求。
这个神经网络输入为3通道的32x32的图像,首先通过5x5卷积核的卷积,然后2x2池化窗口的最大池化,接着5x5卷积核的卷积,然后2x2池化窗口的最大池化。一共持续三轮,最好得到的特征图为64通道4x4的图像,然后使用flatten展平为一维张量,最后通过64输入10输出的全连接层得到输出。
把out,in,dilation(默认为1),kernel_size代入第一个H_out式子算出stride和padding。
示例
import torch
from torch import nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
# 这里新建了一堆类的内部变量
self.conv1 = nn.Conv2d(3, 32, 5, padding=2)
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(32, 32, 5, padding=2)
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
self.conv3 = nn.Conv2d(32, 64, 5, padding=2)
self.maxpool3 = nn.MaxPool2d(kernel_size=2)
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(1024, 64)
self.linear2 = nn.Linear(64, 10)
# 前向传播
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
net = MyNet()
print(net)
# 简单检验神经网络
input = torch.ones(64, 3, 32, 32)
output = net(input)
print(output.shape)
按照经典CNN图搭建了一个CNN模型。
import torch
from torch import nn
from torch.nn import Sequential
from torch.utils.tensorboard import SummaryWriter
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
# 使用Sequential简化神经网络层
self.model1 = Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
# 前向传播
def forward(self, x):
x = self.model1(x)
return x
net = MyNet()
print(net)
# 简单检验神经网络
input = torch.ones(64, 3, 32, 32)
output = net(input)
print(output.shape)
writer = SummaryWriter("../logs_seq")
writer.add_graph(net, input)
writer.close()
使用tensorboard查看这神经网络。