(1)设置过期时间
我们set key的时候,都可以给一个expire time,就是过期时间,指定这个key比如说只能存活1个小时?10分钟?这个很有用,我们自己可以指定缓存到期就失效。
如果假设你设置一个一批key只能存活1个小时,那么接下来1小时后,redis是怎么对这批key进行删除的?
答案是:定期删除+惰性删除+内存淘汰(redis的过期策略能介绍一下?)
所谓定期删除,指的是redis默认是每隔100ms就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。假设redis里放了10万个key,都设置了过期时间,你每隔几百毫秒,就检查10万个key,那redis基本上就死了,cpu负载会很高的,消耗在你的检查过期key上了。注意,这里可不是每隔100ms就遍历所有的设置过期时间的key,那样就是一场性能上的灾难。实际上redis是每隔100ms随机抽取一些key来检查和删除的。
但是问题是,定期删除可能会导致很多过期key到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个key的时候,redis会检查一下 ,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
并不是key到时间就被删除掉,而是你查询这个key的时候,redis再懒惰的检查一下
通过上述两种手段结合起来,保证过期的key一定会被干掉。
很简单,就是说,你的过期key,靠定期删除没有被删除掉,还停留在内存里,占用着你的内存呢,除非你的系统去查一下那个key,才会被redis给删除掉。
但是实际上这还是有问题的,如果定期删除漏掉了很多过期key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期key堆积在内存里,导致redis内存块耗尽了,咋整?
答案是:走内存淘汰机制。
(2)内存淘汰
如果redis的内存占用过多的时候,此时会进行内存淘汰,有如下一些策略:
redis 10个key,现在已经满了,redis需要删除掉5个key
1个key,最近1分钟被查询了100次
1个key,最近10分钟被查询了50次
1个key,最近1个小时倍查询了1次
1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了
2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的)
3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的key给干掉啊
4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key(这个一般不太合适)
5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key
6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除
百度,问题啊,网上鱼龙混杂
如果百度一些api操作,入门的知识,ok的,随便找一个博客都可以
一些高级别的,redis单线程模型
很简单,你写的数据太多,内存满了,或者触发了什么条件,redis lru,自动给你清理掉了一些最近很少使用的数据
(3)手写一个LRU算法?
你可以现场手写最原始的LRU算法,那个代码量太大了,我觉得不太现实
public class LRUCache<K, V> extends LinkedHashMap<K, V> {
private final int CACHE_SIZE;
// 这里就是传递进来最多能缓存多少数据
public LRUCache(int cacheSize) {
super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true); // 这块就是设置一个hashmap的初始大小,同时最后一个true指的是让linkedhashmap按照访问顺序来进行排序,最近访问的放在头,最老访问的就在尾
CACHE_SIZE = cacheSize;
}
@Override
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > CACHE_SIZE; // 这个意思就是说当map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据
}
}
我给你看上面的代码,是告诉你最起码你也得写出来上面那种代码,不求自己纯手工从底层开始打造出自己的LRU,但是起码知道如何利用已有的jdk数据结构实现一个java版的LRU