Excel VLOOKUP函数多条件查找 公式写法=VLOOKUP(条件一&条件二&...,IF({1,0},条件一区域&条件二区域&...,返回列),2,0)例:结果:公式:=VLOOKUP(F2&G2,IF({1,0},A2:A4&B2:B4,C2:C4),2,0)把多个条件用excel中的&拼接起来,同时查找区域第一列也是用&拼接起来,这个可以用两个辅助列来实现,比较麻烦。上面公式利用if函数,把查找区域作为内存数组返回,省去辅助列。if函数部分详解:h
利用chrome浏览器reses插件拦截指定js并替换为本地js 1.chrome浏览器下载安装reses插件2.配置reses拦截规则点击添加规则,然后对应位置填入需要拦截的js地址,和本地js地址,然后保存
Navicat执行大文件SQL脚本往mysql数据库导入数据失败解决办法 失败原因:超过mysql允许的最大数据包解决方案在mysql安装目录下的my.ini文件中加入下面代码(参数根据自已的需要)max_allowed_packet=1000Mwait_timeout=288000interactive_timeout = 288000修改完重启下mysql...
Excel通过身份证号提取出生年月日(生日)/计算截至当前年龄 第一步=MID(B3,7,8)第二步=TEXT(C3,"0-00-00")或者=TEXT(C3,"0年00月00日")第三步=DATEDIF(D3,TODAY(),"Y")三合一=DATEDIF(TEXT(MID(B3,7,8),"0-00-00"),TODAY(),"Y")
Excel获取当前文件所在目录 =LEFT(CELL("filename",A1),FIND("[",CELL("filename",A1))-1)或者=REPLACE(CELL("filename"),FIND("[",CELL("filename"))-1,99,)
ORACLE左连接丢记录 原因:在左连接中 where后不能有其他表的条件过滤 否则就不是单纯的左连接 是过滤连接了解决:把条件加到 on 后面select a.*,b.mm,b.nn from aaaaa aleft join bbbbb b on ( trim(a.num)=trim(b.num) and b.cc = '11')...
图像二值化处理提高pytesseract识别精度 # 识别前处理# 图片二值化from PIL import Imageimport osos.chdir('D:\OCR')img = Image.open('test.png') # 模式L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。Img = img.convert('L')Img.save("test1.png") # 自...
oracle 分组后获取每组中某字段最大的记录 SELECT a."RN",a."ID",a."USERCODE",a."LOGINTIME",a."BZ",a."DQCODE" FROM (SELECT ROW_NUMBER() OVER(PARTITION BY usercode ORDER BY logintime DESC) rn,sys_userlogin_info.* FROM sys_userlogin_i...
python 图片二值化处理(处理后为纯黑白的图片) # 图片二值化from PIL import Imageimg = Image.open('test.jpg') # 模式L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。Img = img.convert('L')Img.save("test1.jpg") # 自定义灰度界限,大于这个值为黑色,小于这个值为白色threshold =...
windows 10环境下安装Tesseract-OCR与python集成 windows 10环境下安装Tesseract-OCR与python集成前言Tesseract是一个开源的ocr引擎,可以开箱即用,项目最初由惠普实验室支持,1996年被移植到Windows上,1998年进行了C++化。在2005年Tesseract由惠普公司宣布开源。2006年到现在,都由Google公司开发。官网宣传目前支持100多种语言的识别,根据我的测试,目前感觉其对机器打印的比较...
Pandas 中 SettingwithCopyWarning 的原理和解决方案 Pandas 中 SettingwithCopyWarning 的原理和解决方案原文链接:https://www.dataquest.io/blog/settingwithcopywarning/原文标题:Understanding SettingwithCopyWarning in pandas原文发布时间:5 JULY 2017(需要注意时效性,文中有一些方法已经弃用,比如 ix)学...
用sql语句实现年龄分段统计 SELECT CASEWHEN (age >= 10 AND age <= 20) THEN '10-20'WHEN (age >= 21 AND age <= 30) THEN '21-30'ELSE '30-'END 'eag_layer', count(*) empsFROM address_bookGROUP B...
Excel数据透视表多个行标签并列显示设置方法 Excel数据透视表多个行标签并列显示设置方法方法/步骤点击透视表任意单元格右键选择数据透视表选项,点击“显示”。勾选“经典数据透视表布局”点击确定,点击任意单元格。点击设计-分类汇总-不显示分类汇总,设置完毕。...
在Excel中快速选择数据 在Excel中快速选择数据很多人对于Excel怎么选择数据可能只有一个方法,那就是按住鼠标直接拖拽,不可否认,选择小部分数据的时候,这是最快的方法,但是要是很多数据呢,几千条甚至几万条,我要从第一条到最后一条的时候,你也要直接拖拽吗?你不眼花吗?当然不能这样做!接下来我会介绍几个快捷键,对你选择数据绝对事半功倍。1. Ctrl + 向下的方向键:直接移动到最低端,同理+向上的方向键,向左...
信用评分模型中的滚动率分析 信用评分模型中的滚动率分析信用风险模型的目标是识别出应被拒之门外的潜在坏客户,因此给出合理的客户好坏分类是建模的基础。比如,信用卡逾期的“坏客户”,究竟应该是所有逾期过的客户,还是逾了好几期的客户呢?前者是不是还能抢救一下,后者是不是风险太高?本期就来讲讲如何用科学的方法,判断你的客户还能不能抢救一下。信用风险模型,简单地说就是通过历史数据,抓取坏客户显著区别于正常客户的特征,并以此为标...
Vintage、滚动率、迁移率的应用 Vintage、滚动率、迁移率的应用一、Vintage Vintage源于葡萄酒酿造,葡萄酒的品质会因葡萄生长的年份不同、气候不同而不同。Vintage分析是指评估不同年份的葡萄酒的品质随着窖藏时间的推移而发生的变化,并且窖藏一定年份后,葡萄酒的品质会趋于稳定。如下图,2000年的葡萄酒品质最好,窖藏5年左右,葡萄酒品质会趋于稳定。借鉴葡萄酒Vintage分析,信用分析领域不仅...
SQL自定义排序 方法一:比如需要对SQL表中的字段NAME进行如下的排序:张三(Z)李四(L)王五(W)赵六(Z)按照sql中的默认排序规则,根据字母顺序(a~z)排,结果为:李四 王五 赵六 张三自定义排序:order by charindex(NAME,‘张三李四王五赵六’)CHARINDEX函数返回字符或者字符串在另一个字符串中的起始位置。CHARINDEX函数调用方法如下:CHARIN...