1、引言
在介绍压缩感知算法(Compressed Sensing,CS)之前,博主先描述一下数据生成的过程。
首先,信号采集装置会以大于奈奎斯特采样频率的频率进行工作(这是一个巨大的工作,有时候可能还会对目标物体造成一定的损伤),由于巨大的数据量,所以在数据传输之前通常会对数据进行压缩,然后在信号接收端再对数据解压缩。
从上面的过程来看,大量数据在传输之前,终究要丢弃,那么是否可以在数据采集的时候就不采集这些数据呢?
从香农采样定理角度来看是不可以的,如果这样,复现出来的信号就会产生失真。
那么压缩过的信号为什么可以很好地复现信号呢?这是因为压缩算法根据信号本身的情况进行有选择的舍弃。比如说10000000这一串二进制数,我们知道了该数据的全部内容,只需要保存1的位置信息就相当于保存全部信息了(当然实际的压缩算法没有这么简单)。
为了解决这一问题,经过几位科学家的努力证明了,如果原始的信号是稀疏的,通过一定规则的欠采样,也能很好地恢复原始信号。其实也好理解,根据不变性,在一方面损失了部分信息,只有在其它方面获得更多的信息,才能保证信息的完整性。
但是,现实世界中哪里有那么多的稀疏信号,显得这个算法好像很鸡肋&