sequence

题意

定义一个序列是K好的,当且仅当其所有元素的按位与的值能被K整除
给出一个长度为N的序列A和K,每次询问[L,R]中有多少个连续子序列是K好的

题解

由于按位与运算是不增的,我们可以把相同的后缀与值分段存下来,显然不会有超过30个段
这就很有意思了
我们可以离线处理,按询问的右端点排序,然后我们从左往右枚举以当前位置为右端点的答案
可以用线段树来更新,用标记永久化

#include<cstdio>
#include<cstring>
#include<algorithm>
#define lch x<<1
#define rch x<<1|1
using namespace std;
typedef long long ll;
const int N=5e5+5;
struct Q{
    int l,r,pos;
}query[N];
bool cmp(Q a,Q b){
    return a.r<b.r;
}
int a[N];
int n,q,K;
int bck[N];
ll ans[N];
struct node{
    ll tag,sum;
}tree[N*4];
inline void Add(int x,int l,int r,int pl,int pr,int d){
    if(pl<=l&&r<=pr){
        tree[x].tag+=d;
        tree[x].sum+=d*(r-l+1);
        return ;
    }
    int mid=(l+r)>>1;
    if(pl<=mid)
        Add(lch,l,mid,pl,pr,d);
    if(pr>mid)
        Add(rch,mid+1,r,pl,pr,d);
    tree[x].sum=tree[lch].sum+tree[rch].sum+tree[x].tag*(r-l+1);
}
inline ll Query(int x,int l,int r,int pl,int pr){
    if(pl<=l&&r<=pr){
        return tree[x].sum;
    }
    int mid=(l+r)>>1;
    ll res=tree[x].tag*(min(pr,r)-max(l,pl)+1);
    if(pl<=mid)
        res+=Query(lch,l,mid,pl,pr);
    if(pr>mid)
        res+=Query(rch,mid+1,r,pl,pr);
    return res;
}
inline void Read(int &x){
    char c=getchar();
    x=0;
    while(c<'0'||c>'9')
        c=getchar();
    while(c>='0'&&c<='9')
        x=x*10+c-'0',c=getchar();
}
int main()
{
    Read(n),Read(q),Read(K);
    //scanf("%d%d%d",&n,&q,&K);
    for(register int i=1;i<=n;i++)
        Read(a[i]);
        //scanf("%d",&a[i]);
    a[0]=2147483647;
    for(register int i=1;i<=q;i++){
        Read(query[i].l),Read(query[i].r);
        //scanf("%d%d",&query[i].l,&query[i].r);
        query[i].pos=i;
    }
    sort(query+1,query+q+1,cmp);
    for(register int i=1,j=1;i<=n&&j<=q;i++){
        bck[i]=i-1;
        int val=a[i];
        for(register int k=i;k;k=bck[k]){
            int z;
            while((z=bck[k])){
                if((a[z]&val)==val)
                    bck[k]=bck[z];
                else
                    break;
            }
            val&=a[k];
            if(val%K==0)
                Add(1,1,n,bck[k]+1,k,1);
        }
        while(query[j].r==i){
            ans[query[j].pos]=Query(1,1,n,query[j].l,query[j].r);
            j++;
        }
    }
    for(register int i=1;i<=q;i++)
        printf("%lld\n",ans[i]);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值