题意
定义一个序列是K好的,当且仅当其所有元素的按位与的值能被K整除
给出一个长度为N的序列A和K,每次询问[L,R]中有多少个连续子序列是K好的
题解
由于按位与运算是不增的,我们可以把相同的后缀与值分段存下来,显然不会有超过30个段
这就很有意思了
我们可以离线处理,按询问的右端点排序,然后我们从左往右枚举以当前位置为右端点的答案
可以用线段树来更新,用标记永久化
#include<cstdio>
#include<cstring>
#include<algorithm>
#define lch x<<1
#define rch x<<1|1
using namespace std;
typedef long long ll;
const int N=5e5+5;
struct Q{
int l,r,pos;
}query[N];
bool cmp(Q a,Q b){
return a.r<b.r;
}
int a[N];
int n,q,K;
int bck[N];
ll ans[N];
struct node{
ll tag,sum;
}tree[N*4];
inline void Add(int x,int l,int r,int pl,int pr,int d){
if(pl<=l&&r<=pr){
tree[x].tag+=d;
tree[x].sum+=d*(r-l+1);
return ;
}
int mid=(l+r)>>1;
if(pl<=mid)
Add(lch,l,mid,pl,pr,d);
if(pr>mid)
Add(rch,mid+1,r,pl,pr,d);
tree[x].sum=tree[lch].sum+tree[rch].sum+tree[x].tag*(r-l+1);
}
inline ll Query(int x,int l,int r,int pl,int pr){
if(pl<=l&&r<=pr){
return tree[x].sum;
}
int mid=(l+r)>>1;
ll res=tree[x].tag*(min(pr,r)-max(l,pl)+1);
if(pl<=mid)
res+=Query(lch,l,mid,pl,pr);
if(pr>mid)
res+=Query(rch,mid+1,r,pl,pr);
return res;
}
inline void Read(int &x){
char c=getchar();
x=0;
while(c<'0'||c>'9')
c=getchar();
while(c>='0'&&c<='9')
x=x*10+c-'0',c=getchar();
}
int main()
{
Read(n),Read(q),Read(K);
//scanf("%d%d%d",&n,&q,&K);
for(register int i=1;i<=n;i++)
Read(a[i]);
//scanf("%d",&a[i]);
a[0]=2147483647;
for(register int i=1;i<=q;i++){
Read(query[i].l),Read(query[i].r);
//scanf("%d%d",&query[i].l,&query[i].r);
query[i].pos=i;
}
sort(query+1,query+q+1,cmp);
for(register int i=1,j=1;i<=n&&j<=q;i++){
bck[i]=i-1;
int val=a[i];
for(register int k=i;k;k=bck[k]){
int z;
while((z=bck[k])){
if((a[z]&val)==val)
bck[k]=bck[z];
else
break;
}
val&=a[k];
if(val%K==0)
Add(1,1,n,bck[k]+1,k,1);
}
while(query[j].r==i){
ans[query[j].pos]=Query(1,1,n,query[j].l,query[j].r);
j++;
}
}
for(register int i=1;i<=q;i++)
printf("%lld\n",ans[i]);
}