时间限制:1秒 内存限制:64M
【问题描述】
GDOI组委会准备举办一次抽奖活动,这次抽奖的规则如下:组委会将发行一批刮奖卡,每张卡刮开上面的涂层后,会出现几种图案中的一种,各种图案出现的几率相同,只要凑齐这n种图案就算得奖,某人买了m张卡片,问其能中奖的概率P是多少。
【输入格式】
多组数据,每组数据只有1行,包含两个整数n,m,分别表示图案的种类数和某人买卡片的张数。
【输出格式】
只有1行,一个实数P,为中奖概率,答案保留4位小数
【输入样例】
2 3
1 2
【输出样例】
0.7500
1.0000
【数据范围】
1<=n,m<=20
【来源】
《国际大学生程序设计竞赛例题(四)》65页。
这道题很简单,设f(i,j)为买i张已经有了j张不同图案的概率,递推方程如下:
f(i,j)=f(i-1,j)(j/m)+f(i-1.j-1)(m-j+1,m).
代码如下:
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int n,m;
double d[25][25];
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d%d",&m,&n)==2)
{
d[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=m&&j<=i;j++)
{
d[i][j]=0;
d[i][j]+=d[i-1][j]*((double)j/m);
if(j) d[i][j]+=d[i-1][j-1]*((double)(m-j+1)/m);
}
printf("%.4lf\n",d[n][m]);
}
return 0;
}