《国际大学生程序设计竞赛例题(四)》65页。 中奖概率(概率)

时间限制:1秒  内存限制:64M

【问题描述】

GDOI组委会准备举办一次抽奖活动,这次抽奖的规则如下:组委会将发行一批刮奖卡,每张卡刮开上面的涂层后,会出现几种图案中的一种,各种图案出现的几率相同,只要凑齐这n种图案就算得奖,某人买了m张卡片,问其能中奖的概率P是多少。

【输入格式】

多组数据,每组数据只有1行,包含两个整数n,m,分别表示图案的种类数和某人买卡片的张数。

【输出格式】

只有1行,一个实数P,为中奖概率,答案保留4位小数

【输入样例】

2 3
1 2

【输出样例】

0.7500
1.0000

【数据范围】

1<=n,m<=20

【来源】

《国际大学生程序设计竞赛例题(四)》65页。

这道题很简单,设f(i,j)为买i张已经有了j张不同图案的概率,递推方程如下:
f(i,j)=f(i-1,j)(j/m)+f(i-1.j-1)(m-j+1,m).

代码如下:

#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

int n,m;
double d[25][25];

int main()
{
    //freopen("in.txt","r",stdin);
    while(scanf("%d%d",&m,&n)==2)
    {
        d[0][0]=1;
        for(int i=1;i<=n;i++)
        for(int j=0;j<=m&&j<=i;j++)
        {
            d[i][j]=0;
            d[i][j]+=d[i-1][j]*((double)j/m);
            if(j) d[i][j]+=d[i-1][j-1]*((double)(m-j+1)/m);
        }
        printf("%.4lf\n",d[n][m]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值