bzoj 1070【scoi2007】修车(网络流)

时间限制:1秒 内存限制:64M
【问题描述】

  同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。

【输入格式】

  第一行有两个数M,N,表示技术人员数与顾客数。接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。

【输出格式】

  最小平均等待时间,答案精确到小数点后2位。

【输入样例】

2 2
3 2
1 4

【输出样例】

1.50

【数据范围】

2<=M<=9,1<=N<=60), (1<=T<=1000

【来源】

bzoj 1070

又是网络流,感觉很怪异的题差不多都可以往网络流想一下.

我们把每个人拆成n个对应他第1—n个修的车,然后分别向n个车连边就好了。(费用请自行分析)

代码如下:

#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn=650;
const int inf=20000005;

struct edge
{
    int u,v,f,c,w;
};
struct shu
{
    int id,sum;
    friend bool operator <(shu a,shu b)
    {
        return a.sum>b.sum;
    }
};
vector<edge>e;
vector<int>g[maxn];
int n,m,a[65][10],s,t,cnt=-1,d[maxn],fa[maxn];

void add(int u,int v,int f,int w)
{
    e.push_back((edge){u,v,f,0,w});
    g[u].push_back(++cnt);
    e.push_back((edge){v,u,0,0,-w});
    g[v].push_back(++cnt);
}

int dij()
{
    priority_queue<shu>q;
    for(int i=s;i<=t;i++) d[i]=inf;
    fa[s]=-1;
    d[s]=0;
    q.push((shu){s,0});
    while(!q.empty())
    {
        shu p=q.top();q.pop();
        int i=p.id;
        if(d[i]<p.sum) continue;
        d[i]=p.sum;
        int tt=g[i].size();
        for(int k=0;k<tt;k++)
        {
            int id=g[i][k],j=e[id].v;
            if(d[j]<=d[i]+e[id].w||e[id].f==e[id].c) continue;
            fa[j]=id;
            d[j]=d[i]+e[id].w;
            q.push((shu){j,d[j]});
        }
    }
    return d[t];
}

int dinic()
{
    int cost=0,f,flow=0;
    while(1)
    {
        f=dij();
        if(f==inf) break;
        cost+=f;
        flow++;
        int id=fa[t];
        while(id!=-1)
        {
            e[id].c++;
            e[id^1].c--;
            id=fa[e[id].u];
        }
    }
    return cost;
}

int main()
{
    //freopen("C.in","r",stdin);
    //freopen("C.out","w",stdout);
    scanf("%d%d",&m,&n);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    scanf("%d",&a[i][j]);
    s=0,t=(m+1)*n+1;
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
        {
            for(int k=1;k<=n;k++)
            {
                add((i-1)*n+j,m*n+k,1,j*a[k][i]);
            }
            add(s,(i-1)*n+j,1,0);
        }
    }
    for(int i=1;i<=n;i++)
    {
        add(m*n+i,t,1,0);
    }
    printf("%.2lf\n",(double)dinic()/n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值