时间限制:1秒 内存限制:64M
【问题描述】
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
【输入格式】
第一行有两个数M,N,表示技术人员数与顾客数。接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
【输出格式】
最小平均等待时间,答案精确到小数点后2位。
【输入样例】
2 2
3 2
1 4
【输出样例】
1.50
【数据范围】
2<=M<=9,1<=N<=60), (1<=T<=1000
【来源】
bzoj 1070
又是网络流,感觉很怪异的题差不多都可以往网络流想一下.
我们把每个人拆成n个对应他第1—n个修的车,然后分别向n个车连边就好了。(费用请自行分析)
代码如下:
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn=650;
const int inf=20000005;
struct edge
{
int u,v,f,c,w;
};
struct shu
{
int id,sum;
friend bool operator <(shu a,shu b)
{
return a.sum>b.sum;
}
};
vector<edge>e;
vector<int>g[maxn];
int n,m,a[65][10],s,t,cnt=-1,d[maxn],fa[maxn];
void add(int u,int v,int f,int w)
{
e.push_back((edge){u,v,f,0,w});
g[u].push_back(++cnt);
e.push_back((edge){v,u,0,0,-w});
g[v].push_back(++cnt);
}
int dij()
{
priority_queue<shu>q;
for(int i=s;i<=t;i++) d[i]=inf;
fa[s]=-1;
d[s]=0;
q.push((shu){s,0});
while(!q.empty())
{
shu p=q.top();q.pop();
int i=p.id;
if(d[i]<p.sum) continue;
d[i]=p.sum;
int tt=g[i].size();
for(int k=0;k<tt;k++)
{
int id=g[i][k],j=e[id].v;
if(d[j]<=d[i]+e[id].w||e[id].f==e[id].c) continue;
fa[j]=id;
d[j]=d[i]+e[id].w;
q.push((shu){j,d[j]});
}
}
return d[t];
}
int dinic()
{
int cost=0,f,flow=0;
while(1)
{
f=dij();
if(f==inf) break;
cost+=f;
flow++;
int id=fa[t];
while(id!=-1)
{
e[id].c++;
e[id^1].c--;
id=fa[e[id].u];
}
}
return cost;
}
int main()
{
//freopen("C.in","r",stdin);
//freopen("C.out","w",stdout);
scanf("%d%d",&m,&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
s=0,t=(m+1)*n+1;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
add((i-1)*n+j,m*n+k,1,j*a[k][i]);
}
add(s,(i-1)*n+j,1,0);
}
}
for(int i=1;i<=n;i++)
{
add(m*n+i,t,1,0);
}
printf("%.2lf\n",(double)dinic()/n);
return 0;
}