- 博客(4)
- 资源 (3)
- 收藏
- 关注
原创 python实现灰色预测Verhulst模型
//Verhulstimport numpy as npimport mathdef predict(data): x1 = data.cumsum() z = (x1[:len(x1) - 1] + x1[1:]) / 2.0 B = np.array([-z, z*z]).T Y = data[1:] u = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Y) a, b = u[0], u[
2020-06-14 12:05:11 2228 1
原创 python实现灰色预测DGM(2,1)
// DGM(2,1)import numpy as npimport mathdef predict(data): a_x0 = np.ediff1d(data).T B = np.array([-data[1:], np.ones([len(data) - 1])]).T Y = a_x0 u = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Y) a, b = u[0], u[1] ret
2020-06-14 12:03:55 1544
原创 python实现GM(2,1)灰色预测模型
python实现GM(2,1)灰色预测模型求出白化方程的参数a1, a2, b后,使用sympy求解微分方程,再进行预测。不知道dsolve求出的微分方程有没有直接提取的办法,我用了正则表达式来提取。// GM(2,1)import numpy as npfrom sympy import *from sympy.abc import x, yimport reimport mathinit_printing()# 定义符号常量x 与 f(x) g(x)。这里的f g还可以用其他字
2020-06-14 00:21:20 4867 6
原创 python实现灰色预测GM(1,1)
python实现灰色预测GM(1,1)级比检验预测main级比检验对数据进行级比检验,若不符合进行平移变换,并返回变换后的数据,以及变换次数// 级比检验def deal_data(data, c): times = 0 while True: i = 1 while i < len(data): proportion = data[i - 1] / data[i] if math.exp(-2 /
2020-06-13 17:06:03 1897 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人