loserChen的博客

life is short, just coding.

机器学习基石下思维导图

2018-11-29 17:09:17

阅读数:6

评论数:0

机器学习基石作业四python实现

总体来说,13-20题总的框架都是一样,因此代码都集中在一起。 import numpy as np def getData(path): with open(path,'r') as fr: rawData=fr.readlines() lenx=len(...

2018-11-29 17:07:17

阅读数:10

评论数:0

Coursera机器学习基石笔记week16

Three Learning Principles Occam‘s Razor 奥卡姆剃刀原则:如无必要勿增实体。 对这个原则的理解相当于是说,在机器学习里最简单的能够解释数据的模型就是最合理的模型。但是有两个问题,怎么知道一个模型是比较简单的?以及,怎么确定更简单的模型就是更好的? 一个简单的h...

2018-11-29 17:04:23

阅读数:8

评论数:0

Coursera机器学习基石笔记week15

Validation Model Selection Problem 针对模型建立的过程,如上图所示,不仅需要考虑算法的选择,还要考虑迭代次数,学习速率,特征转换,正则化,正则化系数的选择等等,不同的搭配,都有不同的机器学习效果。那么我们应该如何找一个最合适的搭配呢? 首先我们考虑通过找一个最好...

2018-11-29 16:58:33

阅读数:4

评论数:0

Coursera机器学习基石笔记week14

Regularization Regularized Hypothesis Set 我们发现10阶多项式hypothesis set里包含了2阶多项式hypothesis set的所有项,那么如果我们加一些限制条件就可以让其近似为H2H_2H2​。这种函数近似称之为不适定问题(ill-posed...

2018-11-29 16:51:26

阅读数:1

评论数:0

Coursera机器学习基石笔记week13

Hazard of Overfitting What is Overfitting hypothesis的阶数越高,表示VC Dimension越大。随着VC Dimension增大,EinE_{in}Ein​是一直减小的,而EoutE_{out}Eout​先减小后增大。在d∗d^*d∗位置,E...

2018-11-29 16:45:22

阅读数:14

评论数:0

机器学习基石作业三python实现

问题6,7,8,10代码实现如下: import numpy as np def E(u,v): return np.exp(u)+np.exp(2*v)+np.exp(u*v)+u*u-2*u*v+2*v*v-3*u-2*v def gradU(func,u,v): r...

2018-11-23 15:50:44

阅读数:19

评论数:0

Coursera机器学习基石笔记week12

Nonlinear Transformation Quadratic Hypothesis 已知对于线性模型来说,可以分类线性可分的情况,但是对于线性不可分的情况,我们可以使用非线性模型来进行分类。 对于图中的h(x),我们可以知道w0=0.6,w1=−1,w2=−1w_0=0.6,w_1=-1...

2018-11-23 15:45:21

阅读数:24

评论数:0

Coursera机器学习基石笔记week11

Linear Models for Classification 严谨一点来说,PLA并不是一种“模型”,PLA (Perceptron Learning Algorithm) 是一种“算法”,用来寻找在“线性可分”的情况下,能够把两个类别完全区分开来的一条直线,所以我们简单的把PLA对应的那个模...

2018-11-23 15:40:10

阅读数:60

评论数:0

Coursera机器学习基石笔记week10

Logistic Regression Logistic Regression Problem 之前提过的二元分类器如PLA,其目标函数为,f(x)=sign(wTx)∈−1,+1f(x)=sign(w^Tx)∈{−1,+1}f(x)=sign(wTx)∈−1,+1,输出要么是-1要么是+1,是一...

2018-11-23 15:35:20

阅读数:42

评论数:0

Coursera机器学习基石作业二python实现

##机器学习基石作业二 下面的代码是17、18题的结合: import numpy as np import random class decisonStump(object): def __init__(self,dimension,data_count,noise): ...

2018-11-12 11:00:09

阅读数:27

评论数:0

Coursera机器学习基石笔记week9

Linear Regression 线性回归的预测函数取值在整个实数空间,这跟线性分类不同。h(x)=wTXh(x)=w^TXh(x)=wTX 在一维或者多维空间里,线性回归的目标是找到一条直线(对应一维)、一个平面(对应二维)或者更高维的超平面,使样本集中的点更接近它,也就是残留误差Residu...

2018-11-10 10:57:58

阅读数:65

评论数:0

Coursera机器学习基石笔记week8

Noise and Error Noise and Probabilistic Target 这节课引入noise的概念,那么VC Dimension的推导还成立吗? 首先,数据集的Noise一般有三种情况: 由于人为因素,正类被误分为负类,或者负类被误分为正类; 同样特征的样本被模型分为不同的...

2018-11-10 10:52:56

阅读数:47

评论数:0

Coursera机器学习基石笔记week7

The VC Dimension Definition of VC Dimension VC dimension就是满足成长函数2N2^N2N的最大的N。也就是dvcd_{vc}dvc​=‘minimum k’-1. VC Dimension of Perceptrons 已知在1D Perce...

2018-11-10 10:49:12

阅读数:53

评论数:0

Coursera机器学习基石笔记week6

Theory of Generalization Restriction of Break Point 很明显,当N=1时,mH(N)m_H(N)mH​(N)=2,;当N=2时,由break point为2可知,任意两点都不能被shattered(shatter的意思是对N个点,能够分解为2N2...

2018-11-10 10:44:39

阅读数:65

评论数:0

Coursera机器学习基石笔记week5

Training vs Testing Recap and Preview 简单回顾一下前面几节课的内容: 第一节课,介绍了机器学习的定义,目标是找到最好的g,使g≈\approx≈f,保证Eout(g)≈0E_{out}(g)\approx0Eout​(g)≈0 第二节课,介绍了如何让Ein≈...

2018-11-10 10:37:53

阅读数:70

评论数:0

Coursera机器学习基石作业一python实现

机器学习基石作业一 import numpy as np def train_matrix(): with open("hw1_15_train.dat.txt","r") as f: rawDat...

2018-11-10 10:19:58

阅读数:95

评论数:0

机器学习基石上思维导图

2018-11-10 10:06:02

阅读数:47

评论数:0

Coursera机器学习基石笔记week4

Feasibility of Learning Learning is Impossible? 我们想要在D以外的数据中更接近目标函数似乎是做不到的,只能保证对D有很好的分类结果。机器学习的这种特性被称为没有免费午餐(No Free Lunch)定理。NFL定理表明没有一个学习算法可以在任何领域总...

2018-11-10 10:02:48

阅读数:52

评论数:0

Coursera机器学习基石笔记week3

Types of Learning Learning with Different Output Space Y 机器学习按照输出空间划分的话,包括二元分类、多元分类、回归、结构化学习等不同的类型。其中二元分类和回归是最基础、最核心的两个类型。 Learning with Different Da...

2018-11-10 09:58:36

阅读数:48

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭