loserChen的博客

https://github.com/loserChen
私信 关注
loserChen.
码龄5年
  • 227,781
    被访问量
  • 176
    原创文章
  • 21,116
    作者排名
  • 232
    粉丝数量
  • 于 2016-07-10 加入CSDN
获得成就
  • 获得311次点赞
  • 内容获得122次评论
  • 获得1,688次收藏
荣誉勋章
TA的专栏
  • leetcode
    23篇
  • 剑指offer
    1篇
  • 吴恩达机器学习笔记
    8篇
  • 吴恩达Deeplearning.ai系列笔记
    15篇
  • 吴恩达机器学习作业
    8篇
  • 林轩田机器学习基石笔记与作业
    22篇
  • 正则表达式
    1篇
  • git
    1篇
  • markdown
    1篇
  • 局域网
    1篇
  • 奇技淫巧
    3篇
  • 数据结构
    2篇
  • matlab
    1篇
  • 机器学习
    38篇
  • java
    1篇
  • ssm
    18篇
  • 计算机网络
    6篇
  • 操作系统
    1篇
  • 程序设计
    5篇
  • 区块链
  • 论文学习
    41篇
  • 保研
    1篇
  • DeepLearning.ai
    15篇
  • tensorflow
    1篇
  • 数学基础
    3篇
  • 踩坑之路
    5篇
  • 机器学习这件事
    4篇
  • numpy
    1篇
  • 随想
  • 2019李宏毅机器学习
    4篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

Windows下Anaconda使用conda activate激活环境出错

今天激活anaconda下的base环境报错:conda activate base报错:CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.If using 'conda activate' from a batch script, change yourinvocation to 'CALL conda.bat activate'.To initialize y
原创
2246阅读
2评论
4点赞
发布博客于 8 月前

Linux下安装LightGBM-GPU版本

安装依赖sudo apt-get install --no-install-recommends git cmake build-essential libboost-dev libboost-system-dev libboost-filesystem-dev安装库pip install setuptools wheel numpy scipy scikit-learn -U安装GPU版...
原创
311阅读
0评论
0点赞
发布博客于 1 年前

正定与半正定矩阵的理解

这篇文章解释的非常好。
原创
789阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——palindrome

Determine whether an integer is a palindrome. Do this without extra space.判断一个整型是否是回文,回文需要规避负数,以及小于10的正数,别的与之前的Reverse Number无异class Solution {public boolean isPalindrome(int x) { int result=0;...
原创
90阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——LCP

Write a function to find the longest common prefix string amongst an array of strings.class Solution {public String longestCommonPrefix(String[] strs) { if(strs.length==0){ return ""; ...
原创
130阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Valid Parentheses

Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.The brackets must close in the correct order, "()" and "()[]{}" are all valid but...
原创
83阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Merge two sorted linked lists and return it as a new list

Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists./** * Definition for singly-linked list. * public class ...
原创
84阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Remove Duplicates

Given a sorted array, remove the duplicates in-place such that each element appear only once and return the new length.Do not allocate extra space for another array, you must do this by modifying the...
原创
103阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Implement strStr()

Implement strStr().Return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.Example 1:Input: haystack = “hello”, needle = “ll”Output: 2Example 2:In...
原创
45阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Reverse Interger

Given a 32-bit signed integer, reverse digits of an integer.Example 1:Input: 123Output: 321Example 2:Input: -123Output: -321Example 3:Input: 120Output: 21Note:Assume we are dealing with...
原创
46阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.For example, given the array [-2,1,-3,4,-1,2,1,-5,4],the contiguous subarray [4,-1,2,1] has th...
原创
51阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Length of Last Word

Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the string.If the last word does not exist, return 0.Note: A word is defined...
原创
105阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Climbing Stairs

Climbing StairsYou are climbing a stair case. It takes n steps to reach to the top.Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?Note: Given n will...
原创
201阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Remove Duplicates from Sorted List

Remove Duplicates from Sorted ListGiven a sorted linked list, delete all duplicates such that each element appear only once.For example,Given 1->1->2, return 1->2.Given 1->1->2->...
原创
102阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Merge Sorted Array

Merge Sorted ArrayGiven two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.Note:You may assume that nums1 has enough space (size that is greater or equal to m + n...
原创
134阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Same Tree

Same TreeGiven two binary trees, write a function to check if they are the same or not.Two binary trees are considered the same if they are structurally identical and the nodes have the same value....
原创
99阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Symmetric Tree

Symmetric TreeGiven a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).For example, this binary tree [1,2,2,3,4,4,3] is symmetric: 1 / \ 2 2 / \ / \...
原创
93阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Convert Sorted Array to Binary Search Tree

Convert Sorted Array to Binary Search TreeGiven an array where elements are sorted in ascending order, convert it to a height balanced BST./** * Definition for a binary tree node. * public class T...
原创
90阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Ugly Number

Ugly NumberWrite a program to check whether a given number is an ugly number.Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is not ug...
原创
49阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Count Primes

Count PrimesDescription:Count the number of prime numbers less than a non-negative number, n.Solution:class Solution { public int countPrimes(int n) { if(n<3){ return 0;...
原创
53阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Balanced Binary Tree

Balanced Binary TreeGiven a binary tree, determine if it is height-balanced.For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of ever...
原创
54阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Add Two Numbers

Add Two NumbersYou are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numb...
原创
49阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Peak Finder

Peak Finder问题在一个数组中找一个peak,使之大于他的邻居即可。可假设数组两端为负无穷。具体描述A peak element is an element that is greater than its neighbors.Given an input array where num[i] ≠ num[i+1], find a peak element and return ...
原创
93阅读
0评论
0点赞
发布博客于 1 年前

剑指Offer之二维数组中的查找

二维数组中的查找题目描述在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。解题思路对于这种问题,我们肯定需要找到一个点,往一个方向是递增的,往另一个方向是递减的,那么显然从二维数组的左下角开始,往右就是递增,往上就是递减的,找到这样一个点就很容易解题...
原创
48阅读
0评论
0点赞
发布博客于 1 年前

Java高并发秒杀项目之高并发优化

Java高并发秒杀高并发优化具体可以参考github获取系统时间不用优化,获取一次内存是需要10纳秒,所以获取一次系统时间是非常快的。redis后端缓存并发优化降低mysql的rowlock的持有时间利用存储过程降低行级锁占有时间大型系统架构项目总结...
原创
381阅读
0评论
0点赞
发布博客于 1 年前

Java高并发秒杀项目之Web层

Java高并发秒杀Web层具体可以参考githubRestful设计整合配置SpringMVC框架<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation...
原创
80阅读
0评论
1点赞
发布博客于 1 年前

java高并发秒杀项目之Service层

Java高并发秒杀系统Service具体可以参考githubservice接口设计在org.seckill包下创建一个service包用于存放我们的Service接口和其实现类,创建一个exception包用于存放service层出现的异常例如重复秒杀商品异常、秒杀已关闭等异常,一个dto包作为传输层,dto和entity的区别在于:entity用于业务数据的封装,而dto用于完成web和s...
原创
663阅读
0评论
0点赞
发布博客于 1 年前

java高并发秒杀项目之Dao

Java高并发秒杀APi之业务分析与DAO层代码编写具体可以参考githubMaven创建项目seckillmvn archetype:generate -DgroupId=cn.codingxiaxw.seckill -DartifactId=seckill -Dpackage=cn.codingxiaxw.seckill -Dversion=1.0-SNAPSHOT -Darchetyp...
原创
97阅读
0评论
0点赞
发布博客于 1 年前

Redis基础知识记录

RedisNoSQL什么是NoSQLNoSQL= not only SQL非关系型的数据库为什么需要NoSQL高并发读写海量数据的高效率存储和访问高可扩展性和高可用性NoSQL数据库的四大分类NoSQL的特点易扩展灵活的数据模型大数据量,高性能高可用RedisRedis应用场景缓存任务队列应用排行榜网站访问统计数据过期处理分布式集群架构中的s...
原创
55阅读
0评论
0点赞
发布博客于 1 年前

shiro基础知识记录

ShiroShiroFilter的工作原理DelegatingFilterProxy 作用是自动到 Spring 容器查找字为 shiroFilter(filter-name)的 bean 并把所有 Filter 的操作委托给它。所以web.xml和spring 容器中的filter-name应该一样。URL匹配模式Ant 路径通配符支持 ?、*、**,注意通配符匹...
原创
73阅读
0评论
0点赞
发布博客于 1 年前

javascript基础知识记录

JavaScript基础知识使用的方法为window对象的,window对象可以省略form对象在文档中按数组进行存储,取form对象时,直接使用数组取值的方式,forms[n]...
原创
41阅读
0评论
0点赞
发布博客于 1 年前

Spring-SpringMVC-Mybatis整合记录

SSM-CRUD功能点• 1、分页• 2、数据校验• jquery前端校验+JSR303后端校验• 3、ajax• 4、Rest风格的URI;使用HTTP协议请求方式的动词,来表示对资 源的操作(GET(查询),POST(新增),PUT(修改),DELETE (删除))技术点• 基础框架-ssm(SpringMVC+Spring+MyBatis)• 数据库-MySQL• 前端框...
原创
73阅读
0评论
0点赞
发布博客于 1 年前

springmvc基础知识记录3

1.springmvc框架基础回顾2.包装类型pojo参数绑定2.1实现方法2.2页面参数和controller方法形参定义3.集合类型绑定3.1数组绑定<input type="button" value="批量删除" onclick="deleteItems()"/>function deleteItems() {document.itemsFo...
原创
77阅读
0评论
0点赞
发布博客于 1 年前

springmvc基础知识记录2

8.springmvc和mybatis整合8.1需求springmvc和mybatis整合8.2整合思路第一步:整合dao层mybatis和spring整合,通过spring管理mapper接口。使用mapper的扫描器自动扫描mapper接口在spring中注册第二步:整理service层通过Spring管理service接口使用配置方式将service接口配置在spring...
原创
66阅读
0评论
0点赞
发布博客于 1 年前

springmvc基础知识记录1

1.SpringMVC框架1.1什么是springmvcspringmvc是spring框架的一个模块,springmvc和spring无需通过中间整合层进行整合。springmvc是一个基于mvc的web框架1.2mvc在b/s系统下的应用mvc是一个设计模式,mvc在b/s系统下的应用:1.3springmvc框架2.入门程序2.1配置前端控制器2.2配置处理映射器...
原创
77阅读
0评论
0点赞
发布博客于 1 年前

spring基础知识记录3

基于aspectj的注解aop使用注解方式实现aop操作创建对象在spring核心配置文件中,开启aop操作在增强类上面使用注解完成aop操作Spring的jdbcTemplate操作spring框架一站式框架针对javaee三层,每一层都有解决技术在dao层,使用jdbcTemplatespring对不同持久化技术进行了封装jdbcT...
原创
62阅读
0评论
0点赞
发布博客于 1 年前

spring基础知识记录2

Spring的Bean 管理(注解)注解代码里面特殊标记,使用注解可以完成功能注解写法 @注解名称(属性名称=属性值)注解使用在类上面,方法上面,属性上面Spring注解开发准备导入jar包导入基本的jar包导入aop的jar包创建类,创建方法创建spring配置文件,引入约束做ioc基本功能,引入约束beans做spring的ioc注解开发,引...
原创
51阅读
0评论
0点赞
发布博客于 1 年前

Spring基础知识记录1

Spring概念spring是开源的轻量级的框架spring核心主要两部分:aop 面向切面编程,扩展功能不是修改源代码实现ioc 控制反转, 比如有一类,在类里有一个方法(不是静态方法),调用类里面的方法,创建类的对象,使用对象调用方法,创建类对象的过程,需要new出来对象把对象的创建不是通过new方式实现的,而是交给Spring配置创建类对象spring是一...
原创
55阅读
0评论
0点赞
发布博客于 1 年前

maven基础知识记录

Maven项目找jar包过程Maven的两大核心依赖管理:对jar包管理过程项目构建:项目在编码完成后,对项目进行编译、测试、打包、部署一系列的操作都通过命令来实现。而不需要借助IDEmaven程序安装前提:maven程序java开发,它的运行依赖jdk。Maven仓库Maven标准目录结构maven常用构建命令mvn -v:查看maven的版本。mvn c...
原创
92阅读
0评论
0点赞
发布博客于 1 年前

mybatis逆向工程

mybatis逆向工程什么是逆向工程可以针对单表自动生成mybatis执行所需要的代码(mapper.java,mapper.xml,po)使用方法(会用)为了防止后期数据库表修改、扩展,需求修改等原因,更新自动生成的po,mapper覆盖有误。我们新建专门逆向生成的项目generatorSqlmapCustom,再按需求将自动生成的po,mapper等拷贝到项目中去。运行逆向工程建...
原创
45阅读
0评论
0点赞
发布博客于 1 年前

mybatis基础知识记录2

课程复习一对一查询上面的id对应的应该是propertyresultType:使用resultType实现较为简单,如果pojo中没有包括查询出来的列名,需要增加列名对应的属性,即可完成映射如果没有查询结果的特殊要求建议使用resultTyperesultMap:需要单独定义resultMap,实现有点麻烦,如果对查询结果有特殊要求,使用resultMap可以完成将关联查询映射...
原创
52阅读
0评论
0点赞
发布博客于 1 年前

神经网络调参大师必知的炼丹细则

原创
111阅读
0评论
0点赞
发布博客于 1 年前

Cousera吴恩达机器学习week8笔记

photo OCRSliding WindowsGetting Lots of Data and Artificial DataCeiling Analysis: What Part of the Pipeline to Work on Next
原创
72阅读
0评论
0点赞
发布博客于 1 年前

Cousera吴恩达机器学习week7笔记

Stochastic Gradient Descent随机梯度下降每次只对一个数据进行计算,相对传统的批处理梯度下降运行速度更快一些。Mini-Batch Gradient DescentStochastic Gradient Descent Convergence虽然不断减小alpha的值有助于我们找到全局最小,但是这个会让工作量增加,而且找到最小的范围已经满足我们的需要了,...
原创
72阅读
0评论
0点赞
发布博客于 1 年前

Cousera吴恩达机器学习week6笔记

Density EstimationGaussian Distribution他的图像如下:以均值为中心,方差为宽度。有了均值与方差的计算方法,就有了参数估计这一名词。就是:给你了一些样本值,你可以求出他们的均值与方差,然后用这两个参数估计总体样本的分布。第二个比较重要的数学知识就是独立分布的概率,等于概率的乘积。AlgorithmBuilding an Anomaly Det...
原创
108阅读
0评论
0点赞
发布博客于 1 年前

Cousera吴恩达机器学习week5笔记

ClusteringK-Means AlgorithmK均值(K-means)算法是一个广泛使用的用于簇划分的算法。下面说明K均值算法的步骤:随机初始化K个样本(点),称之为簇中心(cluster centroids);簇分配: 对于所有的样本,将其分配给离它最近的簇中心;移动簇中心:对于每一个簇,计算属于该簇的所有样本的平均值,移动簇中心到平均值处;重复步骤2和3,直到找到我们想要...
原创
104阅读
0评论
0点赞
发布博客于 1 年前

Coursera吴恩达机器学习week4笔记

Large Margin ClassificationOptimization Objectivesvm:Large margin intuitionMathematics Behind Large Margin ClassificationKernelsKernels1定义决策边界对应的函数是Θ0+Θ1f1+Θ2f2+Θ3f3,其中f1、f2和f3就是相似度函数。下图给定...
原创
224阅读
0评论
0点赞
发布博客于 1 年前

Coursera吴恩达机器学习week3笔记

Evaluating learning algorithmEvaluating a HypothesisOnce we have done some trouble shooting for errors in our predictions by:Getting more training examples:Fixes high varianceTrying smaller sets ...
原创
101阅读
0评论
0点赞
发布博客于 1 年前

Coursera吴恩达机器学习week2笔记

Neural Networkdendrites树突,属于输入axon轴突,属于输出模型中x0为bias unit,偏差单元,总等于1In neural networks, we use the same logistic function as in classification, 1/(1+e(−θTx)), yet we sometimes call it a sigmoid (log...
原创
223阅读
0评论
0点赞
发布博客于 1 年前

Coursera吴恩达机器学习week1笔记

What is Machine Learning?Arthur Samuel described it as: “the field of study that gives computers the ability to learn without being explicitly programmed.” This is an older, informal definition.Tom ...
原创
324阅读
1评论
1点赞
发布博客于 1 年前

LeetCode不定时刷题——Merge Two Sorted Lists

21. Merge Two Sorted Lists递归/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { val = x; } * } */class Solution {...
原创
86阅读
0评论
0点赞
发布博客于 1 年前

LeetCode不定时刷题——Valid_Parentheses

20. Valid Parentheses使用栈对于这种括号的匹配问题,我们很轻易的想到使用栈来进行相关的操作。class Solution { public boolean isValid(String s) { if (s.length()==0){ return true; } Stack<Char...
原创
62阅读
0评论
0点赞
发布博客于 1 年前

2020最新lightgbm安装方法

以前安装lightgbm还是蛮麻烦的,最近打比赛又一次需要使用lightgbm。本来做好了踩坑的准备在服务器上装一个的,后来发现直接pip install lightgbm安装即可,方便快捷,以前应该是没有那么方便的。...
原创
762阅读
1评论
0点赞
发布博客于 2 年前

Attentive Interactive Neural Networks for Answer Selection in Community Question Answering简析

Attentive Interactive Neural Networks for Answer Selection in Community Question AnsweringIntroduction论文区分不同的文本段落,同时设计了一个新颖的注意力交互网络来衡量对于文本段落的关注度。问题与回答的表示先由CNN学习,之后网络架构再学习不同文本段之间的交互。row-wise与column-w...
原创
324阅读
0评论
0点赞
发布博客于 2 年前

Leetcode不定时刷题-两数之和

1、两数之和暴力解class Solution {public: vector<int> twoSum(vector<int>& nums, int target) { int i,j; for(i=0;i<nums.size();i++){ for(j=i+1;j<nums.size...
原创
76阅读
0评论
0点赞
发布博客于 2 年前

Attention-Based Transactional Context Embedding for Next-Item Recommendation简析

Attention-Based Transactional Context Embedding for Next-Item RecommendationAbstract目前大多数存在的基于事物的推荐系统主要考虑最近出现的物品而不是全部物品。同时,他们也假设在一个事物中的物品是有固定顺序的,但是并不切实际。而且,一个长的事务经常包含很多与下一次选择无关的物品。因此作者提出ATEM来衡量不同物品的...
原创
428阅读
1评论
0点赞
发布博客于 2 年前

ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation简析

ATRank: An Attention-Based User Behavior Modeling Framework for RecommendationIntroduction正如一个单词可以通过其上下文来表示,那么一个用户也可以通过其过往的行为序列来表示。但随着技术的发展,越来越多样化的用户行为可以被捕捉并保存在数据库中,使得用户行为表现出异构性,高度多样性。以电商领域的推荐为例、一个用...
原创
865阅读
0评论
0点赞
发布博客于 2 年前

Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction简析

Practice on Long Sequential User Behavior Modeling for Click-Through Rate PredictionIntroduction文章将用户表现建模分解为两个视角。从服务系统的角度,作者设计了一个用户兴趣中心模块(UIC),UIC维护用户最新的兴趣表示向量。从机器学习算法的角度,作者提出了MIMN(多信道的用户兴趣内存网络),借鉴于...
原创
1284阅读
0评论
0点赞
发布博客于 2 年前

Latent Cross: Making Use of Context in Recurrent Recommender Systems简析

Latent Cross: Making Use of Context in Recurrent Recommender SystemsIntroduction在本文中,作者首先研究了在前馈神经网络中将情景特征直接构造出特征的方式对于捕捉特征交叉效果一般。然后作者介绍了Youtube中使用的RNN模型,最后提出了Latent Cross模型,通过将情景特征和RNN中隐状态做点积的方式将情景信息...
原创
971阅读
0评论
0点赞
发布博客于 2 年前

Sequential Scenario-Specific Meta Learner for Online Recommendation简析

Sequential Scenario-Specific Meta Learner for Online RecommendationIntroduction​ 冷启动是个长期存在的挑战对于一般的推荐场景来说。大多数推荐算法依赖于大量的观察数据,以及对于没什么联系的推荐算法产生不了足够好的效果。为了解决这个问题,文章使用了few-shot learning以及meta learning,提出了...
原创
517阅读
0评论
0点赞
发布博客于 2 年前

NAIS: Neural Attentive Item Similarity Model for Recommendation简析

NAIS: Neural Attentive Item Similarity Model for RecommendationPRELIMINARIESStandard Item-based CF为了预测用户u对于物品i的评分,ItemCF的最基本思想是计算物品i与用户u之前交互过的所有物品的相似性,预测评分计算公式如下:Ru+R_u^+Ru+​是用户交互过的所有物品,sijs_{ij}...
原创
731阅读
0评论
0点赞
发布博客于 2 年前

Learning and Transferring IDs Representation in E-commerce简析

Learning and Transferring IDs Representation in E-commerceIntroduction传统的编码不能很好的反应IDs之间的关系以及是高维稀疏的,因此作者提出一个基于embedding的框架来学习以及迁移IDs的表示。最近word embedding技术深入人心,通过捕捉单词语法及语义之间的关系从而将单词映射到低维表示向量中。借鉴于word...
原创
404阅读
0评论
1点赞
发布博客于 2 年前

李宏毅机器学习之Life Long Learning

李宏毅机器学习之Life Long LearningLife-long Learning需要解决的问题Knowledge Retention学习完任务2后任务1的正确率下降了如果一起学,可以学的很好,为什么分开学,就乱了,Catastrophic ForgettingEWC 核心思想:在二次训练的时候,之前比较重要的参数尽量不要去改theta1 在平原上,所以变化对任务1的影...
原创
4134阅读
0评论
0点赞
发布博客于 2 年前

李宏毅机器学习之Explainable ML

李宏毅机器学习之Explainable MLLocal Explanation通过移动灰色方块,来确定哪个部分是最重要的,越趋于蓝色表示越重要。类似的想法,逐像素修改,查看输出的变化求梯度的方法具有一定的局限性:Global Explanation找一个输入使得yi最大,得到的结果如下左图所示,机器觉得最像每个数字的图像在人看来都是噪声设计一个R(x),使得x*中白点...
原创
848阅读
0评论
0点赞
发布博客于 2 年前

Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation简析

Multi-Task Feature Learning for Knowledge Graph Enhanced RecommendationIntroduction在该论文中,将推荐系统和知识图谱建模视为两个分离但是相关的任务,设计了一个多任务学习的框架,利用知识图谱建模任务来辅助推荐系统任务。这两个任务之所以相关,是因为推荐系统中的一个物品会和一个或多个知识图谱中的实体相对应,因此,它们在...
原创
1544阅读
0评论
1点赞
发布博客于 2 年前

李宏毅机器学习之Attack and Defense

李宏毅机器学习之Attack and Defense机器训练出来的模型不光性能要强,还要能够对抗人类的恶意、攻击通过人为地对图片加上噪声,使得分类产生错误。无目标的攻击:就是使得结果与事实的距离越远越好有目标的攻击:输出与答案距离越远越好的同时,还与指定的输出越接近越好Constraint的限制可以简单理解为人眼看不出差别,但是机器可以给出完全不同的答案一般对于限制的选择就是...
原创
593阅读
0评论
1点赞
发布博客于 2 年前

李宏毅机器学习之Anomaly Detection

李宏毅机器学习之Anomaly Detection要解决的问题给定一个数据集,我们想要找到一个函数可以区分输入x是否相似于数据集什么是异常异常侦测的应用异常侦测的分类异常侦测的一般框架(有标签)异常侦测的一般框架(无标签)那么假设数据点的分布满足高斯分布,那么就需要找到使L(θ)L(\theta)L(θ)最大的均值和方差。利用计算出的均值和方差,再利用验证集确定阈...
原创
349阅读
1评论
0点赞
发布博客于 2 年前

Behavior Sequence Transformer for E-commerce Recommendation in Alibaba简析

Behavior Sequence Transformer for E-commerce Recommendation in AlibabaIntroduction文章指出之前的WDL和DIN都没有对序列信号进行很好的捕捉,同时受transformer的启发,文章提出了BST(behavior sequence transformer)来对序列信息进行捕捉生成合适的embedding,后送入M...
原创
1541阅读
0评论
1点赞
发布博客于 2 年前

阿里CTR预估三部曲(3):Deep Session Interest Network for Click-Through Rate Prediction简介

##阿里CTR预估三部曲(3):Deep Session Interest Network for Click-Through Rate PredictionIntroduction文章主要提出对于用户表现sessions,同一个session内的兴趣是相近的,而不同session之间的兴趣是异质的,因此DSIN应运而生来解决上述的问题,其中利用自注意力网络来获取sessin的兴趣表示,然后使...
原创
2389阅读
0评论
0点赞
发布博客于 2 年前

深度学习入门之数学基础概念

深度学习之线代复习标量、向量、矩阵和张量标量(scalar):一个标量就是一个单独的数。向量:一个向量是一列数,这些数是有序排列的。我们可以把向量看作空间中的点,每个元素是不同坐标轴上的坐标。矩阵:矩阵是一个二维数组,其中的每一个元素被两个索引(而非 一个)所确定。张量(tensor):在某些情况下,我们会讨论坐标超过两维的数组。一般地,一 个数组中的元素分布在若干维坐标的规则网格中...
原创
746阅读
0评论
0点赞
发布博客于 2 年前

阿里CTR预估三部曲(2):Deep Interest Evolution Network for Click-Through Rate Prediction简析

##阿里CTR预估三部曲(2):Deep Interest Evolution Network for Click-Through Rate PredictionIntroduction作者提出以前的CTR预估方法都是直接将用户表现的表示向量当作兴趣而没有通过具体的表现对隐藏的兴趣进行建模。因此提出DIEN,而DIEN有两个关键模块。一个是从具体的用户表现中抽取潜在的兴趣,主要是利用GRU+一...
原创
620阅读
0评论
0点赞
发布博客于 2 年前

阿里CTR预估三部曲(1):Deep Interest Network for Click-Through Rate Prediction简析

阿里CTR预估三部曲(1):Deep Interest Network for Click-Through Rate PredictionIntroductionCTR预估是工业应用中的重要任务,最近兴起的模型基本都是遵循embedding&MLP范式的。也就是将高维稀疏向量首先映射成低维的embedding向量并转换成固定长度的向量,最后将所得向量串联在一起经过MLP学习到特征间非线...
原创
1170阅读
0评论
0点赞
发布博客于 2 年前

RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems简析

RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems介绍为了解决基于embedding和基于路径的方法的限制,作者生成了RippleNet.正如涟漪一样,利用用户曾经的点击记录,不断外扩发掘用户可能的兴趣点。###问题生成我们有用户与items的交互,以及包含大量实体与关...
原创
1294阅读
0评论
0点赞
发布博客于 2 年前

DKN: Deep Knowledge-Aware Network for News Recommendation简析

DKN: Deep Knowledge-Aware Network for News Recommendation介绍现存的关于新闻的推荐都没有完全利用知识层面的联系,因此作者提出DKN,利用KCNN融合语义与知识层面的新闻表示向量,同时利用attention将用户点击历史与候选新闻计算。知识储备知识图嵌入文章首先介绍了TransE,TransH,TransR,TransD等表示学习方法...
原创
1756阅读
0评论
1点赞
发布博客于 2 年前

NARM:Neural Attentive Session-based Recommendation简析

Neural Aentive Session-based Recommendation介绍作者提出之前的工作只考虑了用户的序列表现,但是对用户的主要目的并没有明显地强调,因此作者提出Neural Attentive Recommendation Machine(NARM)方法NARM的整体框架如下:编码器方面含有global encoder和local encoder。global...
原创
1843阅读
0评论
2点赞
发布博客于 2 年前

STAMP: Short-Term Attention:Memory Priority Model for Session-based Recommendation简介

STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation介绍作者提出lstm虽然能很好的捕捉用户的总体的兴趣,但是作者指出lstm也许对于建模长的session是不够有效的,因此作者提出STAMP,不仅捕捉用户整体的兴趣同时也将用户当前的兴趣纳入考虑。方法STMP文章首先介绍了ST...
原创
1186阅读
0评论
3点赞
发布博客于 2 年前

Cross-domain Recommendation Without sharing User-relevant Data简析

Cross-domain Recommendation Without sharing User-relevant Data介绍为了联合不同网站的相同数据以提高 推荐质量,但是为了避免商业隐私,文章不使用用户相关的数据,而仅仅使用item的信息,同时为了有效的发掘有用的信号,文章使用了一种新的方法NATR(Neural Attentive Transfer Recommendation)架构...
原创
848阅读
0评论
0点赞
发布博客于 2 年前

Relational Collaborative Filtering: Modeling Multiple Item Relations for Recommendation简析

Relational Collaborative Filtering: Modeling Multiple Item Relations for Recommendation介绍作者介绍了一种新颖的基于item的协同过滤框架——关系型的协同过滤,利用two-level的hieraychy将多个item关系利用attention整合形成user preference以及提高item embedd...
原创
818阅读
2评论
1点赞
发布博客于 2 年前

Attention Is All You Need简析

Attention Is All You Need介绍文章提出的transformer,使用注意力机制,对于资源的要求更低,却同样能达到state-of-the-art的效果。整体框架EncoderEncoder由6个相同的层组成,每层都有两个子层,一个是self-attetion机制,一个是全连接的前向网络。在子层之间也使用了残差连接与layer nomalization。Deco...
原创
111阅读
0评论
0点赞
发布博客于 2 年前

No module named xgboost.sklearn问题解决方法

我是正确安装了xgboost的,但是出现问题的原因只是我把文件名字命名为了xgboost .py,因为这个原因才导致出现了no module named xgboost.sklearnn。
原创
4296阅读
0评论
1点赞
发布博客于 2 年前

Next Item Recommendation with Self-Attention简介

Next Item Recommendation with Self-AttentionIntroduction文章介绍了一种新的神经序列推荐模型。可以学到长期与短期的序列表示。采用的是自注意力机制。THE PROPOSED MODEL: ATTRECShort-Term Intents Modelling with Self-Attention输入:query和key进行非线性转换...
原创
819阅读
0评论
0点赞
发布博客于 2 年前

Real-time Personalization using Embeddings for Search Ranking at Airbnb简介

Real-time Personalization using Embeddings for Search Ranking at AirbnbAbstract作者主要开发了listing and user embedding技术,能捕捉客人短期与长期的兴趣,并给出有效房屋推荐列表。IntroductionNovel contribution:real-time personaliza...
原创
516阅读
0评论
0点赞
发布博客于 2 年前

Applying Deep Learning To Airbnb Search简介

Applying Deep Learning To Airbnb SearchIntroduction首先,作者介绍了airbnb的业务流程:从客人在airbnb上搜索合适的房子,系统给出具有一定顺序的列表房间。同时介绍了airbnb的技术变迁,从最早的人力手动打分,后面又使用gbdt模型有了很大的提高,再是顺应时代变迁在神经网络有持续性的探索,最后收获了满意的结果。搜索排序模型的主要生态...
原创
238阅读
0评论
0点赞
发布博客于 2 年前

Sequential Recommendation with User Memory Networks简介

Sequential Recommendation with User Memory NetworksAbstract存在的推荐系统算法总是将用户历史记录embed成一个单一隐式表示,这可能会失去一些特征或物品的关联性。因此作者提出记忆增强的神经网络与协同过滤的思想进行整合从而作出推荐。通过借助外部的记忆矩阵,作者可以存储并更新用户的历史记录,这有效的提高了模型的表达能力。Introduct...
原创
1255阅读
1评论
0点赞
发布博客于 2 年前

简单易懂的softmax交叉熵损失函数求导

参考简单易懂的softmax交叉熵损失函数求导所得。
原创
186阅读
0评论
0点赞
发布博客于 2 年前

关于极大似然函数与概率的理解

概率对概率p(x∣w)p(x|w)p(x∣w)是描述固定参数w时,随机变量x的分布情况。极大似然函数对于L(θ|x)=f(x|θ)这个等式表示的是对于事件发生的两种角度的看法。其实等式两遍都是表示的这个事件发生的概率或者说可能性。再给定一个样本x后,我们去想这个样本出现的可能性到底是多大。统计学的观点始终是认为样本的出现是基于一个分布的。那么我们去假设这个分布为f,里面有参数theta。对于...
原创
428阅读
0评论
0点赞
发布博客于 2 年前

Beyond Short Snippets: Deep Networks for Video Classification简介

Beyond Short Snippets: Deep Networks for Video ClassificationAbstract使用在imageNet上预训练过的CNN(AlexNet或者GoogleLeNet)提取帧级特征,再将帧级特征和提取到的光流特征输入到池化框架或者LSTM进行训练,得到分类结果。Introduction1.提出采用CNN来得到视频级的全局描述,并且证明增大...
原创
337阅读
0评论
0点赞
发布博客于 2 年前

YouTube-8M: A Large-Scale Video Classification Benchmark简介

YouTube-8M: A Large-Scale Video Classification BenchmarkAbstract作者以1帧每秒的速度解码视频,同时利用预训练在imagenet上的Deep CNN来抽取隐藏的表征。Introduction作者首先利用youtube 视频标注系统对youtube-8m进行标注,同时利用包括人力手动过滤的过滤规则对标签进行相应的筛选同时作者也提出...
原创
546阅读
0评论
0点赞
发布博客于 2 年前

numpy数组显示不完全问题解决方法

加上这句话即可:np.set_printoptions(threshold=np.inf)
原创
2384阅读
0评论
2点赞
发布博客于 2 年前

FNN:Deep Learning over Multi-field Categorical Data简介

Deep Learning over Multi-field Categorical DataMain content文章主要介绍了一种FNN神经网络结构:输入数据都是离散数据,经过one-hot生成离散稀疏的数据。与FFM中的field的概念类似,每个field中只有一个值是1,其余为0。z层的运算等同于FM的运算,利用了预训练好的FM的一次项和二次项作为初始化将原始数据作特殊的embed...
原创
270阅读
0评论
0点赞
发布博客于 2 年前

Feature Re-Learning with Data Augmentation for Content-based Video Recommendation简介

Feature Re-Learning with Data Augmentation for Content-based Video RecommendationIntroduction作者主要将特征再学习,使得在对应的特征空间相关性强的点能够靠的比较接近比原始的特征空间。Proposed solutionAugmentation for frame-level features采用sk...
原创
142阅读
0评论
0点赞
发布博客于 2 年前

为什么说bagging是减少variance,而boosting是减少bias?

Bagging中有两个操作都可以达到降低variance的效果,首先每一轮生成树的时候都是用bootstrap的方式在采样,即保证了数据集的相对多样性;此外bagging还随机选择k个特征,这可以进一步保证每个树之间的差异性,因此对于单独的一棵树来说它的偏差是非常高的,但是由于bagging生成的树可以是多种多样的,达到了防止过拟合的作用,即降低了方差。而对于bias来说的话,由于基分类器优化的目...
原创
553阅读
0评论
1点赞
发布博客于 2 年前

从贝叶斯的角度看正则化

一、正则化一般来说,监督学习可以看做最小化下面的目标函数:其中,第一项L(yi,f(xi;w)) 衡量我们的模型(分类或者回归)对第i个样本的预测值f(xi;w)和真实的标签yi之前的误差。因为我们的模型是要拟合我们的训练样本的嘛,所以我们要求这一项最小,也就是要求我们的模型尽量的拟合我们的训练数据。但正如上面说言,我们不仅要保证训练误差最小,我们更希望我们的模型测试误差小,所以我们需要加...
转载
570阅读
0评论
1点赞
发布博客于 2 年前

GNN:Graph Neural Networks for Social Recommendation简介

Graph Neural Networks for Social RecommendationAbstract基于GNN建立社交推荐系统有很多的挑战,因此作者提出了GraphRec框架。作者提供了一种有原则的方法来联合捕获用户-项目图中的交互和意见,并提出了框架GraphRec,该框架连贯地对两个图和异构优势进行建模。Introduction作者提出三个问题:如何整合user-user...
原创
3967阅读
17评论
4点赞
发布博客于 2 年前

Mac下homebrew+lightgbm心酸安装历程

homebrew+lightgbm心酸安装历程homebrew的安装我们知道使用以下命令来进行安装/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"但是安装的速度不仅非常慢,而且安装中途经常报错:在命令行输入:git config --glo...
原创
448阅读
0评论
0点赞
发布博客于 2 年前

GBDT+LR:Practical Lessons from Predicting Clicks on Ads at Facebook简介

Practical Lessons from Predicting Clicks on Ads at Facebook整体思路文章主要将gbdt与lr融合,效果得到较大的提升。图中共有两棵树,x为一条输入样本,遍历两棵树后,x样本分别落到两颗树的叶子节点上,每个叶子节点对应LR一维特征,那么通过遍历树,就得到了该样本对应的所有LR特征。构造的新特征向量是取值0/1的。举例来说:上图有两棵树...
原创
195阅读
0评论
0点赞
发布博客于 1 年前

如何解决mac上下载homebrew速度慢的问题

只需要连接手机热点!没有开玩笑!真的!
原创
7727阅读
8评论
7点赞
发布博客于 2 年前

GNN:Session-based Recommendation with Graph Neural Networks简介

Session-based Recommendation with Graph Neural Networks摘要作者提出SR-GNN,将session序列建模为图结构数据。在session图的基础上,GNN可以捕捉到items的复杂转换。每一个session利用注意力机制将整体偏好与当前偏好结合进行表示。介绍作者diss了基于马尔可夫链的工作非常依赖数据独立性的假设的。利用RNN的...
原创
3561阅读
5评论
3点赞
发布博客于 2 年前

浙大数据结构mooc知识点总结

数据结构线性结构线性表堆栈队列树树的定义二叉树及存储结构n0+n1+n2=0*n0+1*n1+2*n2+1化简得n0=n2+1二叉树的遍历后序遍历:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问, 因此其右孩子还为被访问。所以接下来按照相同的规则对其右子树进行相同...
原创
1368阅读
0评论
9点赞
发布博客于 2 年前

DCN:Deep & Cross Network for Ad Click Predictions简介

Deep &amp; Cross Network for Ad Click Predictions摘要作者起草了DCN,该网络可以保持DNN的优点(隐式地生成特征之间的交互),同时又利用交叉网络来对特征进行显式的交叉计算。这也不要求手工的特征工程,同时只是在DNN的基础上加了一些可容忍的复杂度。实验证明DCN已经在CTR预估与分类问题上超过了sota。介绍对于web伸缩型的推荐系统,因为其...
原创
1123阅读
0评论
0点赞
发布博客于 2 年前