深度学习
文章平均质量分 54
qq_35578807
这个作者很懒,什么都没留下…
展开
-
ncnn安装报错:C3848 具有类型“const google::protobuf::compiler::java::`anonymous-namespace‘::FieldDescripto
安装ncnn报错,vs:C3848原创 2021-12-10 08:52:06 · 791 阅读 · 0 评论 -
深度学习(二)
线性代数范数(闵可夫斯基距离)闵可夫斯基距离在聚类中,可以将样本集合看作是向量空间中的点的集合,以该空间的距离表示样本之间相似度。常用的距离有闵可夫斯基距离,闵可夫斯基距离距离越大相似度越小,距离越小相似度越大。p>=1,p>=1,当p=1时是曼哈顿距离,p=2时是欧几里得距离,p=∞时是切比雪夫距离:范数用来衡量向量的大小,将向量映射到非负值的函数。向量x的的范数衡量从原点到点x的距离。Lp范数定义:当p=2时为欧式范数,表示从原点出发到向量x确定的点的欧几里得距离。原创 2021-10-06 19:56:37 · 345 阅读 · 0 评论 -
深度学习(一)
导论机器学习和深度学习的关系机器学习:计算机用算法从数据中挖掘模式和特征,分为监督(分类和回归,需要用带标签的样本去训练模型)和无监督(聚类和降维,不需要带标签的样本)分类比如输入一个图片,判断是猫还是狗;回归比如输入面积,地段等来预测房价;分类是预测离散的类别,而回归是预测一个连续的值。聚类是把数据按自组织、自相似的原则聚成一簇;降维是把高维数据降为地维数据方便观察分类和聚类生成的是离散的值,回归和降维生成的是连续的值深度学习特指用深度学习网络解决机器学习问题的一种方法多层感知器=前馈神经原创 2021-09-30 21:31:34 · 139 阅读 · 0 评论