(笔记整合)冒泡排序、插入排序、选择排序

一、排序方法与复杂度归类

1.几种最经典、最常用的排序方法:冒泡排序、插入排序、选择排序、快速排序、归并排序、计数排序、基数排序、桶排序。
2.复杂度归类
冒泡排序、插入排序、选择排序 O(n2)
快速排序、归并排序 O(nlogn)
计数排序、基数排序、桶排序 O(n)

二、如何分析一个“排序算法”?

1.算法的执行效率
(1) 最好、最坏、平均情况时间复杂度。
(2) 时间复杂度的系数、常数和低阶。
(3) 比较次数,交换(或移动)次数。

2.排序算法的稳定性
(1) 稳定性概念:如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。
(2) 稳定性重要性:可针对对象的多种属性进行有优先级的排序。
举例:给电商交易系统中的“订单”排序,按照金额大小对订单数据排序,对于相同金额的订单以下单时间早晚排序。用稳定排序算法可简洁地解决。先按照下单时间给订单排序,排序完成后用稳定排序算法按照订单金额重新排序。

3.排序算法的内存损耗
原地排序算法:特指空间复杂度是O(1)的排序算法。

三、冒泡排序

在这里插入图片描述
冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求,如果不满足就让它俩互换。
稳定性:冒泡排序是稳定的排序算法。
空间复杂度:冒泡排序是原地排序算法。
时间复杂度:
1.最好情况(满有序度):O(n)。
2.最坏情况(满逆序度):O(n2)。
3.平均情况:
“有序度”和“逆序度”:对于一个不完全有序的数组,如4,5,6,3,2,1,有序元素对为3个(4,5),(4,6),(5,6),有序度为3,逆序度为12;对于一个完全有序的数组,如1,2,3,4,5,6,有序度就是n*(n-1)/2,也就是15,称作满有序度;逆序度=满有序度-有序度;冒泡排序、插入排序交换(或移动)次数=逆序度。
最好情况下初始有序度为n*(n-1)/2,最坏情况下初始有序度为0,则平均初始有序度为n*(n-1)/4,即交换次数为n*(n-1)/4,因交换次数<比较次数<最坏情况时间复杂度,所以平均时间复杂度为O(n2)。

    // 冒泡排序,a 表示数组,n 表示数组大小
    public void bubbleSort(int[] a, int n) {
        if (n <= 1) { return; }
        for (int i = 0; i < n; ++i) {
            // 提前退出冒泡循环的标志位
            boolean flag = false;
            for (int j = 0; j < n - i - 1; ++j) {
                if (a[j] > a[j + 1]) { // 交换
                    int tmp = a[j];
                    a[j] = a[j + 1];
                    a[j + 1] = tmp;
                    flag = true; // 表示有数据交换
                }
            }
            if (!flag) {
                break; // 没有数据交换,提前退出
            }
        }
    }

四、插入排序

在这里插入图片描述
插入排序将数组数据分成已排序区间和未排序区间。初始已排序区间只有一个元素,即数组第一个元素。在未排序区间取出一个元素插入到已排序区间的合适位置,直到未排序区间为空。
空间复杂度:插入排序是原地排序算法。
时间复杂度:
1.最好情况:O(n)。
2.最坏情况:O(n2)。
3.平均情况:O(n2)(往数组中插入一个数的平均时间复杂度是O(n),一共重复n次)。
稳定性:插入排序是稳定的排序算法。

	// 插入排序,a 表示数组,n 表示数组大小
	private void insertionSort(int[] a) {
	    int n = a.length;
	    if (n <= 1) { return; }
	    for (int i = 1; i < n; ++i) {
	        int value = a[i];
	        int j = i - 1;
	        // 查找插入的位置
	        for (; j >= 0; --j) {
	            if (a[j] > value) {
	                a[j + 1] = a[j]; // 数据移动
	            } else {
	                break;
	            }
	        }
	        a[j + 1] = value; // 插入数据
	    }
	}

五、选择排序

在这里插入图片描述
选择排序将数组分成已排序区间和未排序区间。初始已排序区间为空。每次从未排序区间中选出最小的元素插入已排序区间的末尾,直到未排序区间为空。空间复杂度:选择排序是原地排序算法。
时间复杂度:(都是O(n2))
1.最好情况:O(n2)。
2.最坏情况:O(n2)。
3.平均情况:O(n2)。
稳定性:选择排序不是稳定的排序算法。

    public static void selectionSort(int[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
            int k = i;
            // 找出最小值的下标
            for (int j = i + 1; j < n; j++) {
                if (a[j] < a[k]) {
                    k = j;
                }
            }
            // 将最小值放到未排序记录的第一个位置
            if (k > i) {
                int tmp = a[i];
                a[i] = a[k];
                a[k] = tmp;
            }
        }
    }

在这里插入图片描述
思考1
选择排序和插入排序的时间复杂度相同,都是O(n2),在实际的软件开发中,为什么我们更倾向于使用插入排序而不是冒泡排序算法呢?

冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换
	int tmp = a[j];
	a[j] = a[j+1];
	a[j+1] = tmp;
	flag = true;
}

插入排序中数据的移动操作:
if (a[j] > value) {
	a[j+1] = a[j]; // 数据移动
} else {
	break;
}

答:从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要3个赋值操作,而插入排序只需要1个,所以在对相同数组进行排序时,冒泡排序的运行时间理论上要长于插入排序。

思考2
我们讲过,特定算法是依赖特定的数据结构的。我们今天讲的几种排序算法,都是基于数组实现的。如果数据存储在链表中,这三种排序算法还能工作吗?如果能,那相应的时间、空间复杂度又是多少呢?

答:一般而言,考虑只能改变节点位置,冒泡排序相比于数组实现,比较次数一致,但交换时操作更复杂;插入排序,比较次数一致,不需要再有后移操作,找到位置后可以直接插入,但排序完毕后可能需要倒置链表;选择排序比较次数一致,交换操作同样比较麻烦。综上,时间复杂度和空间复杂度并无明显变化,若追求极致性能,冒泡排序的时间复杂度系数会变大,插入排序系数会减小,选择排序无明显变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值