10.18 T3

【题目描述】
给出 N个D 维空间的点,求出曼哈顿距离最大的两个点的曼哈顿距离。
两个点(x1,x2,…,xd)、(y1,y2,…,yd)的曼哈顿距离被定义为
|x1-y1|+|x2-y2|+…+|xd-yd|。
【输入文件】
第一行两个正整数N,D。
接下来有N 行,每行描述一个点的坐标。
【输出文件】
在第一行输出曼哈顿距离最大的两个点的曼哈顿距离。
【输入输出样例】
输入
4 2
2 1
1 4
4 5
5 3
输出
6
【数据规模】
在 60%的数据中,1<=N<=1000000,1<=D<=2;
在 100%的数据中,1

找规律

ans=|x1-y1|+|x2-y2|+…+|xd-yd|

都说部分分数能够指出通向std光明之路
所以先考虑d==2的情况
ans=|x1-y1|+|x2-y2|;
展开这个式子会发现存在四种情况

x1-y1+x2-y2y1-x1+x2-y2x1-y1-x2+y2y1-x1+y2-x2
(x1+x2)-(y1+y2)(x2-x1)+(y1-y2)(x1-x2)-(y1+y2)-(x1+x2)+(y1+y2)

通过上面的表格可知,每个点在展开的式子中只有2^d种状态(就是符号的个数);
那么对于100%的数据也只有32种,扫一遍处理出所有的状况;
对于每一种状态,必定有有另一种情况与其对应;
通过绝对值展开式可以发现就是符号完全相反的那一种;
再dfs的时候注意符号的顺序,即可在匹配的时候用O(1)的方法求出临时ans;
所以最后的时候扫一遍进行配对求最大的ans即可;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int ans[40],cnt=1,num[1000100][8];
int n,d;
void dfs(int ff,int deep,int fang){
    if(deep==d){
        ans[cnt]=max(fang,ans[cnt]);
        cnt++;return;}

        deep++;
    dfs(ff,deep,fang+num[ff][deep]);
    dfs(ff,deep,fang-num[ff][deep]);
}
int main(){
    freopen("jail.in","r",stdin);
    freopen("jail.out","w",stdout);
    memset(ans,128,sizeof ans);// 赋值一个较小的数; 
    scanf("%d %d",&n,&d);//%d==num of bianliang
    for(int i=1;i<=n;i++)
        for(int j=1;j<=d;j++)
            scanf("%d",&num[i][j]);//  !  & 
    for(int i=1;i<=n;i++)
        cnt=1,dfs(i,0,0);
    cnt--;
    int res=-9999999;
    for(int i=1;i<=cnt/2;i++)
        res=max(res,ans[i]+ans[cnt-i+1]);

    printf("%d",res);    
    return 0;
}

//改scanf真心无语.....   
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值