数据结构与算法之(渐进)时间复杂度

本文深入探讨了算法分析中的核心概念——渐进时间复杂度,详细解释了其定义及求解方法。渐进时间复杂度是衡量算法效率的重要指标,通过保留时间函数的最高阶项并忽略常数系数,可以简化分析过程,更直观地了解算法的性能随输入规模变化的趋势。

1. 搜了好多文章也没太理解,看了下面这个大佬的文章之后有些理解了,附上大佬的博客地址:

https://blog.csdn.net/qq_35661171/article/details/84313601

2. 重点概念总结一下:

  • T(n)函数表示基本操作执行次数
  • 渐进时间复杂度:若存在函数f(n), 使得当n趋近于无穷大时, T(n) / f(n) 的极限值为不等于零的常数, 则称 f(n)是T(n)的同数量级函数。记作T(n) = O( f(n) ), 称O( f(n) )为算法的渐进时间复杂度, 简称时间复杂度。渐进时间复杂度用大写O来表示,所以也被称为大O表示法。
  • 时间复杂度的求法:
  1. 如果运行时间是常数量级,用常数1表示
  2. 只保留时间函数中的最高阶项
  3. 如果最高阶项存在,则省去最高阶项前面的系数
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值