//计数排序
public static int[] countSort(int[] array) {
//1.得到数列最大值
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
//2.根据数列最大值确定统计数组的长度
int[] countArray = new int[max + 1];
//3.遍历数列,填充统计数组
for (int i = 0; i < array.length; i++) {
countArray[array[i]]++;
}
//4.遍历统计数组,输出结果
int index = 0;
int[] sortedArray = new int[array.length];
for (int i = 0; i < countArray.length; i++) {
for (int j = 0; j < countArray[i]; j++) {
sortedArray[index++] = i;
}
}
return sortedArray;
}
这段代码在一开头补充了一个步骤,就是求得数列的最大整数值max。后面创建的统计数组countArray,长度就是max+1,以此保证数组的最后一个下标是max。
但是,这段代码只能用数列最大值来决定统计数组的长度,其实并不严谨(当数列最小值很大时,如:95,94,91,98,99,90,99,93,91,92;如果创造长度为100的数组,前面0-87的空间位置都浪费了)
怎么解决这个问题呢?
很简单,我们不再以(输入数列的最大值+1)作为统计数组的长度,而是以(数列最大值和最小值的差+1)作为统计数组的长度。
同时,数列的最小值作为一个偏移量,用于统计数组的对号入座。
以刚才的数列为例,统计数组的长度为 99-90+1 = 10 ,偏移量等于数列的最小值 90 。
对于第一个整数95,对应的统计数组下标是 95-90 = 5,如图所示: