题目:给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
来源:力扣(LeetCode)
法一思路:
假设存在一个数列(不考虑空或一个元素的情况)
a,b,c,d,e,f
我们用一个i指针从下标1开始,每次i运动的过程中,我们计算的就是以下标i为结束(即在第i+1天卖出)的最大利润,另用一个start指针指向以下标i结束的买入股票的时间(即包括d及之前所有元素的最小值)。
当i运动到e处时,假设start为b,由我们定义可知,b即为e前所有元素中最小的值,分两种情况:
(1)e>=b,则start不变,以e为结尾的最大值即为e-b。
(2)e<b,则start指向e,以e为结尾的最大值即为0。
我们只需要用一个max记录遍历过程中最大值即可。
代码:
class Solution {
public int maxProfit(int[] prices) {
if(prices.length == 0||prices.length == 1)
return 0;
int start = 0;
int res = 0;
for(int i = 1;i<prices.length;i++){
if(prices[i]>=prices[start])
res = Math.max(res,prices[i]-prices[start]);
else{
start = i;
}
}
return res;
}
}
作者:deusjin
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/solution/dong-tai-gui-hua-fei-chang-yi-dong-by-deusjin/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
法二思路:(3.12更新)
受牛顿莱布尼茨公示启发,加法可变减法,减法可变加法。
简而言之:区间和可转变为求差问题,求差可转变为区间和问题。
假设原数组为
a,b,c,d
另做数组:
b-a,c-b,d-c
可发现新数组求差问题即转变为求最大和问题,动态规划即可。
class Solution {
public int maxProfit(int[] prices) {
if(prices.length<=1)
return 0;
int res = Math.max(prices[1]-prices[0],0);
int last = res;
for(int i = 1;i<prices.length-1;i++){
int cur = Math.max(0,prices[i+1]-prices[i]+last);
last =cur;
res = Math.max(res,cur);
}
return res;
}
}