- 博客(10)
- 收藏
- 关注
原创 Prompt
某些研究(如 ViLa-MIL)会为 patch 或不同尺度图像生成上下文 prompt,但依然是从类定义出发,而非“为样本定制”伪标签。Prompt 是类的语义表达,不是样本的伪标签。它为模型提供“类是什么”的理解,而不是告诉它“样本是哪个类”。你可以把 prompt 理解成标签的文字表达版本,而不是样本的“预测标签”。🔍 Prompt 本质上是「类的描述」,不是「样本的伪标签」🔠 提供一种“可对齐的语义表达”,以便模型理解类的含义。但这两者的目标是一样的——告诉模型哪个类是“正类”。
2025-03-27 17:50:52
973
原创 DeepSeek Janus-Pro 部署
ssh -L 8890:127.0.0.1:7860 -L 8891:127.0.0.1:7861 服务器用户名@服务器IP(xxx.xxx.x.xxx) -p 服务器的登录端口(abcd)之后,可以打开多个终端窗口,每个窗口运行一个 ssh -L 命令,同时转发Janus-Pro-7B和Janus-Pro-1B的端口。当问题的限制比较多时,Janus-Pro-7B会严格遵循格式回答,Janus-Pro-1B会自由发挥。Janus-Pro-7B的回答准确一些,更容易抓住关键词。
2025-02-13 17:18:40
714
原创 Multi-view Classification【代码】
else:利用find_classes() 方法从 self.all_paths 中提取出所有的酒店 ID,作为类别classes(每个酒店一个类别),再通过class_to_idx把酒店类别映射为一个整数的类别索引。总的来说,就是每个酒店ID都对应一个整数的类别索引。如果在初始化时提供了 classes,则使用提供的 classes 和 class_to_idx。这里是为了让验证集复用训练集的类别索引。
2025-01-24 15:10:30
288
原创 一些关于深度学习的概念和tips(未完待续)
在多任务学习或联合优化中,模型通常需要同时优化多个目标(例如分类损失和蒸馏损失)。这时,如果所有目标的梯度直接影响模型的参数更新,可能会产生梯度冲突(GradientConflicts)。Gradient-DetachedCopies提供了一种简单的方式来分离不同任务之间的影响,确保每个任务的优化过程独立且稳定。使用Gradient-DetachedCopies的主要目的是避免在蒸馏损失计算中产生不必要的梯度耦合。3.确保蒸馏损失中的目标分布固定,优化更稳定。2.保护分类任务的核心优化目标;
2025-01-14 15:09:45
216
原创 Transformer、ViT、Swin Transformer (未完待续)
RNN之所以可以解决序列问题,是因为它可以记住每一时刻的信息,每一时刻的隐藏层的输出向量不仅由该时刻的输入决定,还由上一时刻的隐藏层的输出决定。
2025-01-13 17:43:30
196
原创 使用Qt Creator调用eBUS SDK
在新界面,勾选左下角“ Show unreachable Network Devices",可以看到没有成功连接的网络相机,原因是IP地址配置错误。每个版本的OpenCV的依赖项的名字都不同,我这里是opencv_world490.lib与opencv_world490d.lib。函数,可以看到在这里是图像缓存区,能够对捕获的图像进行一些操作。在Visual Studio打开项目属性,在VC++目录这里,把Opencv的路径添加进去。这时,会自动跳转到mainwindow.cpp,生成该按钮对应的槽函数。
2025-01-06 17:53:57
607
原创 Swin Transformer for Regression Task【代码】
我打算进行一个颜色分布预测任务。该任务的输入是图像,输出是图像中目标区域的主要颜色分布及其对应的比例 [p1, p2, p3, p4],这四个比例的总和为1。可以看作一个回归任务,需要对分类模型进行一些修改,从离散的输出变成连续的概率分布。我们基于Swin Transformer的分类模型进行一些修改。
2024-12-27 14:07:07
286
原创 Swin Transformer for Image Classification【代码】
如果还想继续提高准确度,可以从后往前继续解冻其他层,同时近一步降低学习率。我解冻了最后三层,准确率可以达到94.1%。},},},},},
2024-12-21 21:29:12
875
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人