GAN
weberyoung
这个作者很懒,什么都没留下…
展开
-
ACGAN和CGAN的区别
网络结构相同的是ACGAN和CGAN在生成器输入时候,噪音z都拼接了采集的labels。不同的是,ACGAN在判别器输入时,真假数据集都没有拼接labels,labels只是用来在辅助分类器中作为target_labels。而CGAN的判别器输入,真假数据集都拼接了labels。网络结构上,生成网络和鉴别网络的网络层不再是CGAN的全连接,而是ACGAN的深层卷积网络(这是在DCGAN开始引入的改变),卷积能够更好的提取图片的特征值,所有ACGAN生成的图片边缘更具有连续性,感觉更真实。CGA原创 2020-06-11 11:16:37 · 3468 阅读 · 2 评论 -
论文阅读:《Time Series Generative Adversrial Networks》(TimeGAN,时间序列GAN)
这篇时间序列GAN的论文下载了好久了,但是由于过于复杂,没怎么仔细研读。最近为了进行和自己的GAN对比,找到了他的codebase 准备再仔细读一下,跑一下代码。《Time Series Generative Adversrial Networks》作者:JinsungYoonUniversity of California, Los Angeles, USA jsyoon0823@g.ucla.eduDanielJarrettUniversity of Cambridge, UK daniel原创 2020-05-11 22:33:19 · 14252 阅读 · 27 评论 -
WGAN与GAN的区别
代码上与GAN的区别只有四点:判别器最后一层去掉sigmoid 生成器和判别器的loss不取log 每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c 不要用基于动量的优化算法(包括momentum和Adam),推荐RMSProp,SGD也行...原创 2020-05-08 11:03:13 · 2693 阅读 · 0 评论