题目描述
设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的AA点出发,可以向下行走,也可以向右走,直到到达右下角的BB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字00)。
此人从AA点到BB点共走两次,试找出22条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数NN(表示N \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的00表示输入结束。
输出格式
只需输出一个整数,表示22条路径上取得的最大的和。
输入输出样例
输入 #1复制
8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0
输出 #1复制
67
说明/提示
NOIP 2000 提高组第四题
#include<iostream>
#include<algorithm>
using namespace std;
int MAP[11][11];
int DP[11][11][11][11];
int m;
int main() {
scanf("%d", &m);
int x, y, num;
while (1) {
scanf("%d%d%d", &x, &y, &num);
if (!x && !y && !num) {
break;
}
MAP[x][y] = num;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= m; j++) {
for (int k = 1; k <= m; k++) {
int l = i + j - k;
if (l <= 0) {
break;
}
DP[i][j][k][l] = max(DP[i - 1][j][k - 1][l], max(DP[i - 1][j][k][l - 1], max(DP[i][j - 1][k - 1][l], DP[i][j - 1][k][l - 1])));
if (i == k && j == l) {
DP[i][j][k][l] += MAP[i][j];
}
else {
DP[i][j][k][l] += MAP[i][j] + MAP[k][l];
}
}
}
}
printf("%d\n", DP[m][m][m][m]);
return 0;
}