DP-四维DP模板

题目描述

设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00。如下图所示(见样例):

A
 0  0  0  0  0  0  0  0
 0  0 13  0  0  6  0  0
 0  0  0  0  7  0  0  0
 0  0  0 14  0  0  0  0
 0 21  0  0  0  4  0  0
 0  0 15  0  0  0  0  0
 0 14  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
                         B

某人从图的左上角的AA点出发,可以向下行走,也可以向右走,直到到达右下角的BB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字00)。
此人从AA点到BB点共走两次,试找出22条这样的路径,使得取得的数之和为最大。

输入格式

输入的第一行为一个整数NN(表示N \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的00表示输入结束。

输出格式

只需输出一个整数,表示22条路径上取得的最大的和。

输入输出样例

输入 #1复制

8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0

输出 #1复制

67

说明/提示

NOIP 2000 提高组第四题

#include<iostream>
#include<algorithm>

using namespace std;

int MAP[11][11];
int DP[11][11][11][11];

int m;

int main() {
	scanf("%d", &m);
	int x, y, num;
	while (1) {
		scanf("%d%d%d", &x, &y, &num);
		if (!x && !y && !num) {
			break;
		}
		MAP[x][y] = num;
	}
	for (int i = 1; i <= m; i++) {
		for (int j = 1; j <= m; j++) {
			for (int k = 1; k <= m; k++) {
				int l = i + j - k;
				if (l <= 0) {
					break;
				}
				DP[i][j][k][l] = max(DP[i - 1][j][k - 1][l], max(DP[i - 1][j][k][l - 1], max(DP[i][j - 1][k - 1][l], DP[i][j - 1][k][l - 1])));
				if (i == k && j == l) {
					DP[i][j][k][l] += MAP[i][j];
				}
				else {
					DP[i][j][k][l] += MAP[i][j] + MAP[k][l];
				}
			}
		}
	}
	printf("%d\n", DP[m][m][m][m]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值