博主个人博客网站:文客
这个系列主要记录在力扣刷题的总结和问题
如果你想每天和我一起刷题,可以关注一下我的个人博客网站:文客,我会每天在这里更新技术文章和面试题,也会及时收到大家的评论与留言,欢迎各位大佬来交流!
今天刷了几道剑指Offer的题,虽然说不难但是都蛮有代表性的,所以拿出来总结记录一下吧!
剑指 Offer 12. 矩阵中的路径
给定一个 m x n
二维字符网格 board
和一个字符串单词 word
。如果 word
存在于网格中,返回 true
;否则,返回 false
。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
例如,在下面的 3×4 的矩阵中包含单词 “ABCCED”(单词中的字母已标出)。
示例 1:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
输出:true
示例 2:
输入:board = [["a","b"],["c","d"]], word = "abcd"
输出:false
思路:
这题是很标准的dfs+回溯。根据题目要求,以矩阵中的每个点为起点去搜索,直至找出包含单词的路径,如果找不到则返回false。
题解:
class Solution {
public boolean exist(char[][] board, String word) {
boolean[][] visited = new boolean[board.length][board[0].length];
for(int i = 0; i < board.length; i++){
for(int j = 0; j < board[i].length; j++){
if(dfs(board,word,visited,0,i,j) == true){
return true;
}
}
}
return false;
}
public boolean dfs(char[][] board, String word, boolean[][] visited
, int start, int i, int j){
if(i < 0 || i >= board.length || j < 0 || j >= board[0].length
|| visited[i][j] == true || board[i][j] != word.charAt(start)){
return false;
}
if(start == word.length() - 1){
return true;
}
visited[i][j] = true;
boolean ans = dfs(board,word,visited,start+1,i-1,j)||
dfs(board,word,visited,start+1,i+1,j)||
dfs(board,word,visited,start+1,i,j-1)||
dfs(board,word,visited,start+1,i,j+1);
visited[i][j] = false;
return ans;
}
}
剑指 Offer 13. 机器人的运动范围
地上有一个m行n列的方格,从坐标 [0,0]
到坐标 [m-1,n-1]
。一个机器人从坐标 [0, 0]
的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
思路:
本题和上题类似,依旧是使用深度优先搜索,不过本题只需要从(0,0)开始搜索即可,并使用visited数组进行剪枝。
题解:
class Solution {
public int movingCount(int m, int n, int k) {
boolean[][] visited = new boolean[m][n];
return dfs(m,n,0,0,k,visited);
}
public int dfs(int m, int n, int i, int j, int k, boolean[][] visited){
if(i < 0 || i >= m || j < 0 || j >= n ||
getDigitSum(i) + getDigitSum(j) > k || visited[i][j] == true){
return 0;
}
visited[i][j] = true;
return dfs(m,n,i-1,j,k,visited) + dfs(m,n,i+1,j,k,visited)
+dfs(m,n,i,j-1,k,visited) + dfs(m,n,i,j+1,k,visited) + 1;
}
public int getDigitSum(int num){
int sum = 0;
while(num > 0){
sum += num % 10;
num /= 10;
}
return sum;
}
}
剑指 Offer 14- I. 剪绳子
给你一根长度为 n
的绳子,请把绳子剪成整数长度的 m
段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1]
。请问 k[0]*k[1]*...*k[m-1]
可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
思路:
动态规划,首先n如果小于2是无意义的,所以n从2开始。
当n=2时,可以将绳子分成2段长度为1的绳子,所以乘积为1,顺着下去[3 -> 2],[4 -> 4],[5 -> 6],[6 -> 8],…,[10 -> 36]
根据规律得出递推公式即可
题解:
class Solution {
public int cuttingRope(int n) {
int[] dp = new int[n + 1];
dp[2] = 1;
for(int i = 3; i <= n; i++){
for(int j = 1; j < i; j++){
dp[i] = Math.max(dp[i],Math.max(j * (i - j),dp[i - j]*j));
}
}
return dp[n];
}
}
剑指 Offer 15. 二进制中1的个数
编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为 汉明重量).)。
提示:
- 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
- 在 Java 中,编译器使用 二进制补码 记法来表示有符号整数。因此,在上面的 示例 3 中,输入表示有符号整数
-3
。
示例 1:
输入:n = 11 (控制台输入 00000000000000000000000000001011)
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。
示例 2:
输入:n = 128 (控制台输入 00000000000000000000000010000000)
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。
示例 3:
输入:n = 4294967293 (控制台输入 11111111111111111111111111111101,部分语言中 n = -3)
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。
思路:
这道题是很简单的位运算,可以有三种方式:
- 使用Integer提供了bitCount方法
- 循环右移,通过奇偶来判断最低为是否为1
- 使用num & (num - 1),这可以使最低为的1变为0
题解:
public class Solution {
// you need to treat n as an unsigned value
public int hammingWeight(int n) {
int count = 0;
while(n != 0){
n &= n - 1;
count++;
}
return count;
}
}
剑指 Offer 16. 数值的整数次方
实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3
输出:9.26100
示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25
思路:
快速幂,记下来就好了,说实话的写的时候也忘记了。
题解:
class Solution {
public double myPow(double x, int n) {
long N = n;
return (N > 0) ? quickMul(x,N) : 1/quickMul(x,-N);
}
public double quickMul(double x, long N){
if(N == 0){
return 1;
}
double y = quickMul(x,N/2);
return (N % 2 == 0) ? y * y : y * y * x;
}
}