一、论文核心
1.引入Inception V3 module
2.提出CNN网络的四大基本原则:
-
原则一:避免过度降维或者收缩特征bottleneck,特别是在网络浅层,feature map的长宽大小应该随网络加深缓缓减小。
-
原则二:特征越多,收敛越快。相互独立的特征越多,输入的信息分解得越彻底,也印证了赫布原理的fire together, wire together。
-
原则三:在空间聚合之前,也就是使用类似3*3,5*5这种大卷积核之前,可以使用1*1卷积降维,这个时候信息不会损失(或者损失很少)基于一个假设,如果输出用于空间聚合上下文,则相邻单元之间的强相关性导致在降维过程中的信息损失要少得多。
-
原则四:均衡网络的宽度和深度,两者同时提升,既可提高性能,又能提高效率。
二、Inception V3 module
Inception V3在Inception V1的基础上首先将5x5卷积分解为2个3x3卷积,可以在保证感受野大小不变的情况下减少参数量和计算量,同时引入额外的非线性。如下图所示:
然后将3x3卷积分解为1x3和3x1两个不对称卷积(空间可分离卷积,nxn的卷积核替换成 1xn 和 nx1,在12-20维度表现好,大维度表现不好。)。如下图所示:
Inception V3 module还有一种变体形式,可以理解为在最后的输出层之前对卷积进行宽度上的分解。如下图所示:
三、网络结构
四、参考内容
Inception V3:Rethinking the Inception Architecture for Computer Vision
深度学习卷积神经网络——经典网络GoogLeNet(Inception V3)网络的搭建与实现_安装inceptionv3-CSDN博客