LeetCode算法之旅——数组简介篇

数组简介篇中包含了三道算法题,算法小白的探索之旅从这里开始!

第一题:寻找数组的中心索引

题目描述:

给定一个整数类型的数组 nums,请编写一个能够返回数组“中心索引”的方法。

我们是这样定义数组中心索引的:数组中心索引的左侧所有元素相加的和等于右侧所有元素相加的和。

如果数组不存在中心索引,那么我们应该返回 -1。如果数组有多个中心索引,那么我们应该返回最靠近左边的那一个。

示例 1:

输入: 
nums = [1, 7, 3, 6, 5, 6]
输出: 3
解释: 
索引3 (nums[3] = 6) 的左侧数之和(1 + 7 + 3 = 11),与右侧数之和(5 + 6 = 11)相等。
同时, 3 也是第一个符合要求的中心索引。

示例2:

输入: 
nums = [1, 2, 3]
输出: -1
解释: 
数组中不存在满足此条件的中心索引。 

解题思路:

1.用一个数组来保存当前元素左边的和,举个例子,如果nums = [1, 7, 3, 6, 5, 6],那么这个数组就是这样的:[0,1,8,11,17,22]。在nums中1的左边没有数字,所以把这个数组的第一个元素设为0。

2.当前元素右边的和 = 输入的数组的总和 - 当前元素 - 左边的和

3.如果:左边的和 = 右边的和,就返回该索引,不存在就返回-1。

代码:

class Solution {
    public int pivotIndex(int[] nums) {
        
        int len = nums.length;
        if (len == 0 || len == 1)
            return -1;
        
        //当前元素左边的和
        int[] left = new int[len];
        
        //总和
        int sum = nums[0];
        
        left[0] = 0;

       //从左开始遍历就满足了“如果数组有多个中心索引,那么我们应该返回最靠近左边的那一个”这个条件
        for (int i = 1; i < len; i++) {
            left[i] = left[i - 1] + nums[i - 1];
            sum += nums[i];
        }
        for (int i = 0; i < len; i++){
            //当前元素左边的和 == 总和-当前元素左边的和- 当前元素 ........就是右边的和
            if (left[i] == sum - left[i] - nums[i]){
                return i;
            }
        }
        return -1;
    }
      
}

第二题:至少是其他数字两倍的最大数

题目描述:

在一个给定的数组nums中,总是存在一个最大元素 。

查找数组中的最大元素是否至少是数组中每个其他数字的两倍。

如果是,则返回最大元素的索引,否则返回-1。

示例 1:

输入: 
nums = [1, 7, 3, 6, 5, 6]
输出: 3
解释: 
索引3 (nums[3] = 6) 的左侧数之和(1 + 7 + 3 = 11),与右侧数之和(5 + 6 = 11)相等。
同时, 3 也是第一个符合要求的中心索引。

示例2:

输入: nums = [1, 2, 3, 4]
输出: -1
解释: 4没有超过3的两倍大, 所以我们返回 -1.
提示:  nums 的长度范围在[1, 50]
       每个 nums[i] 的整数范围在 [0, 99]

解题思路:

找出输入数组中最大的那个数max,还有第二大的数secondMax,只要max >= 2 * secondMax,就可满足条件。

代码:

class Solution {
    public int dominantIndex(int[] nums) {

        int len = nums.length;
        int max = -1;//最大数
        int secondMax = -1;//第二大数
        int maxIndex = -1;//最大数的索引
        
        for(int i=0;i<len;i++){
          if(nums[i]>max){//比max大
              secondMax = max;//先把max付给secondMax
              max = nums[i];//max值更新
              maxIndex = i;//记住索引
          }else if(nums[i] > secondMax){
             secondMax = nums[i];
          }
        }
        return ((max >= 2 * secondMax) ? maxIndex : -1);
}
}

第三题:加一

题目描述:

给定一个由整数组成的非空数组所表示的非负整数,在该数的基础上加一。

最高位数字存放在数组的首位, 数组中每个元素只存储一个数字。

你可以假设除了整数 0 之外,这个整数不会以零开头。

示例 1:

输入: [1,2,3]
输出: [1,2,4]
解释: 输入数组表示数字 123。

示例 2:

输入: [4,3,2,1]
输出: [4,3,2,2]
解释: 输入数组表示数字 4321。

解题思路:

1.从右向左遍历,数组中的最后一个数开始加1

2.只有 9 +1 才会发生进位,根据题目的意思,9在进位后就变成了两个数:1和0,而不是10。

3.考虑极端情况:每个数都是9,比如[9,9,9,9,9],加1后就变成了[1,0,0,0,0,0]

代码:

class Solution {
   public int[] plusOne(int[] digits) {
       int carry = 1;
        for (int i = digits.length - 1; i >= 0; i--) {//从右向左,脑补一下
            if (carry == 0) {//没有发生进位,可以返回了
                return digits;
            }
            int temp = digits[i] + carry;
            carry = temp / 10;//是否进位,也就是carry = 0或1
            digits[i] = temp % 10;
        }
       
        //极端情况
        if (carry != 0) {
            int[] result = new int[digits.length + 1];
            result[0] = 1;
            return result;
        }
        return digits;
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值