SMOTE
在处理样本不均衡问题时,一种常用的方法是使用“自动重采样”方法。这种方法通过在训练数据中多次重复某些样本来平衡样本数量。具体来说,假设你正在使用 scikit-learn,你可以使用 imblearn
库中的 SMOTE
类来解决这个问题。
下面是一个使用 SMOTE
类进行自动重采样的简单示例:
# 首先,导入所需的库
from sklearn.datasets import make_classification
from imblearn.over_sampling import SMOTE
# 生成一个具有样本不均衡的分类数据集
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
n_classes=2, weights=[0.05, 0.95], random_state=1337)
# 使用 SMOTE 类对数据进行自动重采样
smote = SMOTE(random_state=1337)
X_resampled, y_resampled = smote.fit_resample(X, y)
在这个例子中,我们首先使用 make_classification
函数生成了一个具有样本不均衡的分类数据集。然后,我们使用 SMOTE
类将数据进行自动重采样,并将重新采样后的数据集赋值给 X_resampled
和 y_resampled
。这个数据集现在应该是均衡的,可以用于模型训练。
降采样
除了自动重采样,还有其他几种常用的解决样本不均衡问题的方法。例如,你可以使用“降采样”方法,它通过从数据集中删除某些样本来减少样本数量,以平衡数据。
在使用 scikit-learn 时,你可以使用 imblearn
库中的 RandomUnderSampler
类来实现这种方法。例如,下面的代码片段展示了如何使用 RandomUnderSampler
类进行下采样:
# 首先,导入所需的库
from sklearn.datasets import make_classification
from imblearn.under_sampling import RandomUnderSampler
# 生成一个具有样本不均衡的分类数据集
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
n_classes=2, weights=[0.05, 0.95], random_state=1337)
# 使用 RandomUnderSampler 类对数据进行下采样
under_sampler = RandomUnderSampler(random_state=1337)
X_resampled, y_resampled = under_sampler.fit_resample(X, y)
在这个例子中,我们首先生成了一个样本不均衡的分类数据集,然后使用 RandomUnderSampler
类对数据进行下采样。最后,我们将重新采样后的数据集赋值给 X_resampled
和 y_resampled
,这样就可以用于模型训练。
修改权重
要是你的数据实在是太少了,降采样完就没啥数据了,那就要修改权重了。
除了自动重采样和下采样,还有一些其他方法可以解决样本不均衡问题。例如,你可以使用“修改损失函数”的方法,即在模型训练时调整损失函数的权重,以确保少数类的样本对结果的贡献更大。
在 scikit-learn 中,你可以使用 class_weight
参数来实现这种方法。例如,下面的代码片段展示了如何在使用决策树分类器训练模型时调整损失函数的权重:
# 首先,导入所需的库
from sklearn.datasets import make_classification
from sklearn.tree import DecisionTreeClassifier
# 生成一个具有样本不均衡的分类数据集
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
n_classes=2, weights=[0.05, 0.95], random_state=1337)
# 使用 DecisionTreeClassifier 类创建一个决策树分类器
classifier = DecisionTreeClassifier(random_state=1337)
# 调整损失函数的权重,并训练模型
classifier.fit(X, y, class_weight={0: 1, 1: 10})
这个例子中,我们首先生成了一个样本不均衡的分类数据集。然后,我们使用 DecisionTreeClassifier
类创建了一个决策树分类器,并在调用 fit
方法时使用 class_weight
参数调整了损失函数的权重。