codevs 3027 线段覆盖 2 解题报告 (序列型DP)

3 篇文章 0 订阅
1 篇文章 0 订阅

在线评测:

http://codevs.cn/problem/3027/


整体思路:

dp【i】表示包含i的最大和,则可以得到方程

1
2
3
4
5
6
7
8
9
for  ( int  i = 1;i <= n;i++)
     {
         maxn = 0;
         for  ( int  j = 1;j <=i;j++)
         {
             if  (sz[j].t <= sz[i]  .s) maxn = max(maxn,dp[j]+ sz[i].w);
        
         dp[i] = maxn;
    
我们只需要按照右坐标排序,然后如此dp,最后寻找dp值最大的即可!


失误之处:

开始写成了这样,但是当这条边前面的边没有满足不重合条件的边时,则不会考虑抛弃前面的边放当前边的情况!

1
2
3
4
5
6
7
8
9
for  ( int  i = 1;i <= n;i++)
     {
         maxn = 0;
         for  ( int  j = 1;j <=i;j++)
         {
             if  (sz[j].t <= sz[i]  .s) maxn = max(maxn,dp[j]+ sz[i].w);
        
         dp[i] = maxn;
    


体会心得:

考虑一些重要的语句会不会因为判断而没有机会执行的情况!

AC代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using  namespace  std;
struct  lx
{
     int  s,t,w;
};
 
int  dp[1100],n,maxn;
lx sz[1100];
 
bool  pd(lx a,lx b)
{
     return  a.t < b.t;
}
 
int  main()
{
     scanf ( "%d" ,&n);
     for  ( int  i = 1;i <= n;i++)
     {
         scanf ( "%d%d%d" ,&sz[i].s,&sz[i].t,&sz[i].w);
     }
     sort(sz+1,sz+n+1,pd);
     for  ( int  i = 1;i <= n;i++)
     {
         maxn = 0;
         for  ( int  j = 1;j <=i;j++)
         {
             if  (sz[j].t <= sz[i].s) maxn = max(maxn,dp[j]);
         }
         dp[i] = maxn+ sz[i].w;
     }
     for  ( int  i = 1; i <= n;i++)
     {
         maxn = max(maxn,dp[i]);
     }
     printf ( "%d\n" ,maxn);
     return  0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值