在线评测:
http://codevs.cn/problem/3027/
整体思路:
dp【i】表示包含i的最大和,则可以得到方程
1
2
3
4
5
6
7
8
9
|
for
(
int
i = 1;i <= n;i++)
{
maxn = 0;
for
(
int
j = 1;j <=i;j++)
{
if
(sz[j].t <= sz[i] .s) maxn = max(maxn,dp[j]+ sz[i].w);
}
dp[i] = maxn;
}
|
失误之处:
开始写成了这样,但是当这条边前面的边没有满足不重合条件的边时,则不会考虑抛弃前面的边放当前边的情况!
1
2
3
4
5
6
7
8
9
|
for
(
int
i = 1;i <= n;i++)
{
maxn = 0;
for
(
int
j = 1;j <=i;j++)
{
if
(sz[j].t <= sz[i] .s) maxn = max(maxn,dp[j]+ sz[i].w);
}
dp[i] = maxn;
}
|
体会心得:
考虑一些重要的语句会不会因为判断而没有机会执行的情况!
AC代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using
namespace
std;
struct
lx
{
int
s,t,w;
};
int
dp[1100],n,maxn;
lx sz[1100];
bool
pd(lx a,lx b)
{
return
a.t < b.t;
}
int
main()
{
scanf
(
"%d"
,&n);
for
(
int
i = 1;i <= n;i++)
{
scanf
(
"%d%d%d"
,&sz[i].s,&sz[i].t,&sz[i].w);
}
sort(sz+1,sz+n+1,pd);
for
(
int
i = 1;i <= n;i++)
{
maxn = 0;
for
(
int
j = 1;j <=i;j++)
{
if
(sz[j].t <= sz[i].s) maxn = max(maxn,dp[j]);
}
dp[i] = maxn+ sz[i].w;
}
for
(
int
i = 1; i <= n;i++)
{
maxn = max(maxn,dp[i]);
}
printf
(
"%d\n"
,maxn);
return
0;
}
|