题意:n个点的完全图,每个点有一个点权,在i和j之间连一条边的代价是Ai^Aj
求最小生成树的权值,n<=2e5,Ai<2^30
题解:考虑这么一种求mst的方法,每次将当前点集分为两部分S,T,分别递归到S,T做,再找一条连接S,T的权值最小的边把两个集合合并起来。我们按位从大到小处理,每次根据这一位是0还是1分成两个集合,找两个集合间的最小边可以用trie解决,复杂度O(nlog*30)。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MaxN=2e5+5;
int N,Tot;
int A[MaxN],Son[MaxN*30][2];
void Insert(int x){
int i,u=0,c;
for(i=29;~i;i--){
c=(x>>i&1);
if(!Son[u][c])
Son[u][c]=++Tot;
u=Son[u][c];
}
}
int Get_Mn(int x){
int i,u=0,mn=0,c;
for(i=29;~i;i--){
c=(x>>i&1);
if(Son[u][c])
u=Son[u][c];
else mn+=(1<<i),u=Son[u][c^1];
}
return mn;
}
LL Solve(int now,int d,int l,int r){
if(d<0||l==r)
return 0;
if(A[r]<now+(1<<d))
return Solve(now,d-1,l,r);
if(A[l]>=now+(1<<d))
return Solve(now+(1<<d),d-1,l,r);
int i,j,pos=lower_bound(A+l,A+r+1,now+(1<<d))-A-1,mn=1<<30;
for(i=pos+1;i<=r;i++)
Insert(A[i]);
for(i=l;i<=pos;i++)
mn=min(mn,Get_Mn(A[i]));
for(i=0;i<=Tot;i++)
Son[i][0]=Son[i][1]=0;
Tot=0;
return mn+Solve(now,d-1,l,pos)+Solve(now+(1<<d),d-1,pos+1,r);
}
int main(){
freopen("888G.in","r",stdin);
freopen("888G.out","w",stdout);
int i;
scanf("%d",&N);
for(i=1;i<=N;i++)
scanf("%d",&A[i]);
sort(A+1,A+N+1);
printf("%I64d\n",Solve(0,29,1,N));
return 0;
}