【学习笔记】扩展欧拉定理

  • 定理内容:

a b ≡ { a b % ϕ ( p )             ( a , p ) = 1 a b                     ( a , p ) ≠ 1 , b &lt; ϕ ( p ) a b % ϕ ( p ) + ϕ ( p )      ( a , p ) ≠ 1 , b ≥ ϕ ( p )         ( m o d   p ) a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~~~(a,p)\neq1,b&lt;\phi(p)\\ a^{b\%\phi(p)+\phi(p)}~~~~(a,p)\neq1,b\geq\phi(p) \end{cases}~~~~~~~(mod~p) abab%ϕ(p)           (a,p)=1ab                   (a,p)̸=1,b<ϕ(p)ab%ϕ(p)+ϕ(p)    (a,p)̸=1,bϕ(p)       (mod p)

  • 对于 ( a , p ) = 1 (a,p)=1 (a,p)=1 的证明:
    • 假设 p p p 的简化剩余系为 { a 1 ‾ , a 2 ‾ , … , a ϕ ( p ) ‾ } \{\overline{a_1},\overline{a_2},\dots,\overline{a_{\phi(p)}} \} {a1,a2,,aϕ(p)}
    • ∀ a i , a j , \forall a_i,a_j, ai,aj, a × a i ≡ a × a j ( m o d   p ) a\times a_i\equiv a\times a_j(mod~p) a×aia×aj(mod p),因为 ( a , p ) = 1 (a,p)=1 (a,p)=1,所以 a i ≡ a j a_i\equiv a_j aiaj。故当 a i ≠ a j a_i\neq a_j ai̸=aj 时, a × a i a\times a_i a×ai a × a j a\times a_j a×aj 也属于不同的同余类。
    • 又因为简化剩余系关于模 p p p 乘法封闭,所以 { a a 1 ‾ , a a 2 ‾ , … , a a ϕ ( p ) ‾ } \{\overline{aa_1},\overline{aa_2},\dots,\overline{aa_{\phi(p)}} \} {aa1,aa2,,aaϕ(p)} 也是 p p p 的简化剩余系。
    • 所以 a ϕ ( p ) a 1 a 2 … a ϕ ( p ) ≡ ( a a 1 ) ( a a 2 ) … ( a a ϕ ( p ) ) ≡ a 1 a 2 … a ϕ ( p ) ( m o d   p ) a^{\phi(p)}a_1a_2\dots a_{\phi(p)} \equiv (aa_1)(aa_2)\dots(aa_{\phi(p)})\equiv a_1a_2\dots a_{\phi(p)}(mod~p) aϕ(p)a1a2aϕ(p)(aa1)(aa2)(aaϕ(p))a1a2aϕ(p)(mod p)
    • a ϕ ( p ) ≡ 1 ( m o d   p ) a^{\phi(p)}\equiv 1(mod~p) aϕ(p)1(mod p)
    • a b ≡ ( a ϕ ( p ) ) ⌊ b ϕ ( p ) ⌋ a b % ϕ ( p ) ≡ a b % ϕ ( p ) ( m o d   p ) a^b\equiv (a^{\phi(p)})^{\lfloor\frac{b}{\phi(p)}\rfloor}a^{b\%\phi(p)}\equiv a^{b\%\phi(p)}(mod~p) ab(aϕ(p))ϕ(p)bab%ϕ(p)ab%ϕ(p)(mod p)
  • 对于 ( a , p ) ≠ 1 (a,p)\neq 1 (a,p)̸=1的证明:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值