【日常训练】回路(树形DP+时间复杂度分析/模拟费用流)

题目大意:

  • 给定一棵 n n n 个结点的树,我们将给出的树边称为一类边,边有边权。
  • 然后现在你需要在树上加上恰好 k k k 条二类边, k k k 条边的端点可以任意选取,但是边权给定。
  • 现在你要找到一条加边方案,使得树上满足以下条件的有向回路的边权和最小(一条边可以被重复经过,重复经过的边权重复累加)
    • 每条一类边至少经过一次
    • 每条二类边最多经过一次
  • 求边权和。 n ≤ 1 0 5 , k ≤ 100 n\leq10^5,k\leq100 n105,k100

算法分析:

  • 首先我们知道当 k = 0 k=0 k=0 时原图的边权和的两倍即为答案,那么我们就考虑连边能从两倍边权和中减少的最大代价。
  • 然后我们考虑把一条二类边连接上时,会有什么作用:
    在这里插入图片描述
  • 即选取 u , v u,v u,v 两点连二类边,作用就是把代价减少 d i s ( u , v ) dis(u,v) dis(u,v)
  • 然后再考虑再选一对点 ( x , y ) (x,y) (x,y),这时可以发现 ( u , v ) (u,v) (u,v) ( x , y ) (x,y) (x,y) 的路径交部分不能重复减少代价,反而这部分的代价要算成原来两倍的那种代价。

算法一:

  • 根据上面分析,我们可以直接得到算法一。
  • 即每次选取一条最长链,然后把最长链的边权取反。
  • 将这个过程重复 k k k 次,即得到减少的最大代价,得到答案。
  • 这么做的正确性我们接下来证明。

算法二:

  • 根据最开始的分析,将路径交给抵消掉,得到的有贡献的部分实际上是 k k k 条边不相交的路径。
  • 原问题就转化为了:在带权树上选取 k k k 条边不相交的路径,使得边权和最大。
  • 算法二是考虑用 D P DP DP f [ u ] [ i ] [ 0 / 1 ] f[u][i][0/1] f[u][i][0/1] 表示在 u u u 的子树中选取 i i i 条边不相交的路径,其中点 u u u 是否是某一条路径的端点,的最大边权和。
  • 转移比较显然,这里就不说了。
  • 但是这里需要分析时间复杂度,因为下面的代码看起来是 O ( n k 2 ) \mathcal O(nk^2) O(nk2) 的。
void dfs(int u)
{
	sze[u] = 1; 
	for (v : son[u])
	{
		dfs(v); 
		for (int i = 0; i <= min(k,sze[u]); ++i)
			for (int j = 0; j <= min(k, sze[v]); ++j)
			{ ... //该部分的时间复杂度是O(1) }
		sze[u] += sze[v];  
	}
}
  • 称一个点,在它或它祖先中的转移,对应的循环变量的上界为该点的界。

  • 为我们分类讨论一下 s z e [ u ] , s z e [ v ] sze[u],sze[v] sze[u],sze[v]

    • s z e [ u ] ≥ k , s z e [ v ] ≥ k sze[u]\ge k,sze[v]\ge k sze[u]k,sze[v]k,则这样的合并次数不超过 ⌊ n k ⌋ \lfloor\frac nk\rfloor kn,时间复杂度 O ( n k ) \mathcal O(nk) O(nk)
    • 若只有其中一个 ≥ k \ge k k,相当于小的那个子树的每个点的界用 k k k 的时间,使界变为 k k k,每个点只会发生一次这样的变化,时间复杂度 O ( n k ) \mathcal O(nk) O(nk)
    • s z e [ u ] ≤ k , s z e [ v ] ≤ k sze[u]\le k, sze[v]\le k sze[u]k,sze[v]k,则相当于 u u u 中的每个点用 s z e [ v ] sze[v] sze[v] 的时间使其界扩大 s z e [ v ] sze[v] sze[v],每个点最多扩大的值为 k k k,时间复杂度 O ( n k ) \mathcal O(nk) O(nk)
  • 接下来补充对算法一的说明。

  • 因为问题转化为了 k k k 条不相交的路径的最大边权和。

  • 可以转化为一个费用流问题,即源点向每个点连边,每个点向汇点连边,原图连双向边,还需要一个点限制流量。

  • 然后这个模型是比较特殊的,我们发现可以模拟费用流的过程,即算法一:每次取最长链,然后取反,取反后再选这条边就等价于退流。

  • 算法一的正确性得证。

  • 两种算法的时间复杂度均为 O ( n k ) \mathcal O(nk) O(nk)

  • 属于简单题,但是这里树形 D P DP DP 的时间复杂度分析是比较经典的。

#include <bits/stdc++.h>

template <class T>
inline void read(T &x)
{
	static char ch; 
	static bool opt; 
	while (!isdigit(ch = getchar()) && ch != '-'); 
	x = (opt = ch == '-') ? 0 : ch - '0'; 
	while (isdigit(ch = getchar()))
		x = x * 10 + ch - '0'; 
	if (opt) x = ~x + 1; 
}

template <class T>
inline void putint(T x)
{
	static char buf[15], *tail = buf; 
	if (!x) putchar('0'); 
	else
	{
		if (x < 0) putchar('-'), x = ~x + 1; 
		for (; x; x /= 10) *++tail = x % 10 + '0'; 
		for (; tail != buf; --tail) putchar(*tail); 
	}
}

template <class T>
inline void relax(T &x, const T &y)
{
	if (x < y) x = y; 
}

const int MaxM = 1e2 + 5; 
const int MaxNV = 1e5 + 5; 
const int MaxNE = MaxNV << 1; 

struct halfEdge
{
	int v, w;
	halfEdge *next; 
}adj_pool[MaxNE], *adj[MaxNV], *adj_tail = adj_pool; 

#define trav(u) for (halfEdge *e = adj[u]; e; e = e->next)

int n, m, w[MaxNV], sze[MaxNV]; 
int f[MaxNV][MaxM][2], g[MaxM][2]; 

inline void addEdge(int u, int v, int w)
{
	adj_tail->v = v; 
	adj_tail->w = w; 
	adj_tail->next = adj[u]; 
	adj[u] = adj_tail++; 
}

inline void dfs(int u, int pre)
{
	sze[u] = 1; 
	f[u][0][0] = f[u][1][1] = 0; 
	trav(u) if (e->v != pre)
	{
		dfs(e->v, u); 
		
		memset(g, 0, sizeof(g)); 
		for (int i = 0; i <= m && i <= sze[u]; ++i)
		{
			for (int j = 1; i + j <= m + 1 && j <= sze[e->v]; ++j)
			{
				if (i)
				{
					relax(g[i + j][1], f[u][i][1] + f[e->v][j][0]); 
					relax(g[i + j - 1][0], f[u][i][1] + f[e->v][j][1] + e->w);
				}
				relax(g[i + j][0], f[u][i][0] + f[e->v][j][0]); 
				relax(g[i + j][1], f[u][i][0] + f[e->v][j][1] + e->w); 
				if (!f[e->v][j][0]) break; 
			}
		}
		for (int i = 0; i <= m; ++i)
		{

			for (int j = 0; j <= 1; ++j)
				relax(f[u][i][j], g[i][j]); 
			relax(f[u][i + 1][1], f[u][i][0]); 
			relax(f[u][i][0], f[u][i][1]); 
		}
		sze[u] += sze[e->v]; 
	}
}

int main()
{
	freopen("yist.in", "r", stdin); 
	freopen("yist.out", "w", stdout); 
	

	read(n), read(m); 

	int tot = 0; 
	for (int i = 1; i < n; ++i)
	{
		int u, v, w; 
		read(u), read(v), read(w); 
		addEdge(u, v, w); 
		addEdge(v, u, w); 

		tot += w; 
	}

	tot <<= 1; 

	for (int i = 1; i <= m; ++i)
		read(w[i]); 
	std::sort(w + 1, w + m + 1); 

	dfs(1, 0); 

	int ans = 0, sum = 0; 
	for (int i = 1; i <= m; ++i)
	{
		sum += w[i]; 
		if (f[1][i][0] <= sum) break; 

		relax(ans, f[1][i][0] - sum); 
	}

	printf("%d\n", tot - ans); 
	
	return 0; 
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值