【1146】Topological Order (25分)【拓扑排序】

本文深入探讨了拓扑排序算法的实现原理,通过C++代码示例详细解释了如何使用邻接表存储图结构,并利用入度数组进行拓扑排序验证。文章提供了完整的代码示例,包括输入点数、边数、查询次数以及读取拓扑序列的过程。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<algorithm>  
#include<map>
#include<vector>
#include<queue> 
using namespace std;  
//如果当前的结点入度≠0则不是拓扑序列,如果为0则将它能到达的结点的入度-1
//一定要注意多个for循环的循环变量i不能写混乱,可以为i、ii、iii
   
int main(){   
	int n,m;//点数n  边数m
	vector<int> v[1010];
	scanf("%d %d",&n,&m);
	int in[1000+1]={0};
	int a,b;
	//用邻接表保存这个图
	for(int i=0;i<m;i++){
		scanf("%d %d",&a,&b);
		v[a].push_back(b);//a指向b结点
		in[b]++;//b结点的入度+1
	}
	int k;
	scanf("%d",&k);//k次查询
	bool space=false;//是否输出空格
	for(int i=0;i<k;i++){
		int A[1010];
		for(int ii=0;ii<n;ii++)
			scanf("%d",&A[ii]);//读入一次查询的拓扑序列
		vector<int>temp(in,in+n+1);
		for(int iii=0;iii<n;iii++)
			if(temp[A[iii]]!=0){//当前入度不为0,则非拓扑序列
				printf("%s%d",space?" ":"",i);
				space=true;
				break;
			}else{//入度为0
				for(int j:v[A[iii]])//遍历能到达的结点并将入度-1
					--temp[j];
			}
	}
	system("pause");
    return 0;   
}

 

<think>我们被要求使用中文回答,并且需要遵循严格的格式要求。 用户的问题是关于networkx库中`nx.topological_sort()`函数的使用和示例。 根据引用,我们知道NetworkX是一个用于复杂网络的Python库,而拓扑排序是有向无环图(DAG)中节点的一种线性排,使得对于每一条有向边(u, v),节点u都出现在节点v之前。 我们将按照以下步骤回答: 1. 解释拓扑排序的概念。 2. 介绍`nx.topological_sort()`函数的基本用法。 3. 提供一个完整的示例代码,包括创建有向图、进行拓扑排序以及输出结果。 4. 注意:在示例代码中,我们将使用NetworkX创建一个小型的有向无环图。 同时,根据系统指令,我们需要生成相关问题。 注意:在回答中,我们引用了NetworkX官方文档(引用[1]和引用[3]),因此会在适当的地方添加引用标识。 开始回答:</think>### NetworkX 中 `nx.topological_sort()` 函数的使用与示例 拓扑排序是针对**有向无环图(DAG)** 的节点线性排算法,使得对于任意有向边 \((u \to v)\),节点 \(u\) 总出现在节点 \(v\) 之前。`nx.topological_sort()` 是 NetworkX 库中实现该算法的核心函数[^1]。 --- #### **基本用法** ```python import networkx as nx # 创建有向图 G = nx.DiGraph() edges = [("A", "B"), ("A", "C"), ("B", "D"), ("C", "D")] G.add_edges_from(edges) # 拓扑排序 sorted_nodes = list(nx.topological_sort(G)) print(sorted_nodes) # 输出:['A', 'C', 'B', 'D'] 或 ['A', 'B', 'C', 'D'](合法排不唯一) ``` - **输入要求**:图必须为有向无环图(DAG),若图含环会抛出 `NetworkXUnfeasible` 异常。 - **返回值**:节点的拓扑排序列表(可能有多个合法结果,函数返回其中一种)。 --- #### **完整示例:课程依赖关系排** 假设课程依赖关系如下: - 数据结构依赖编程基础 - 算法依赖数据结构 - 机器学习依赖算法和数学 ```python import networkx as nx # 定义课程依赖图 G = nx.DiGraph() G.add_edges_from([ ("编程基础", "数据结构"), ("数据结构", "算法"), ("算法", "机器学习"), ("数学", "机器学习") ]) # 拓扑排序(确保无循环依赖) try: course_order = list(nx.topological_sort(G)) print("课程学习顺:", course_order) except nx.NetworkXUnfeasible: print("图中存在循环依赖,无法排!") # 输出示例:['数学', '编程基础', '数据结构', '算法', '机器学习'] ``` --- #### **关键注意事项** 1. **检测环**:排前可用 `nx.is_directed_acyclic_graph(G)` 验证是否为 DAG。 2. **多结果处理**:若需所有可能排,使用 `list(nx.all_topological_sorts(G))`。 3. **性能**:时间复杂度 \(O(V+E)\)(\(V\) 为节点数,\(E\) 为边数),适合大型图处理[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值