知识图谱
文章平均质量分 96
KG
山顶夕景
实践出真知
展开
-
【CS224W】(task6)Google的PageRank算法
Eigenvector Formulation特征向量形式。在之前的task中提到的无向图,直接使用邻接矩阵��=��λc=Ac,求出该矩阵的特征向量eigenvector,即节点特征,如上个task我们对地铁路线求解每个节点的nx.degree_centrality(G)然后可视化。PageRank的随机邻接矩阵stochastic adjacency matrix M,flow equation也有类似的特征向量等式(如下),此时r即M的图的平稳分布的一个随机游走:原创 2023-02-25 17:08:19 · 960 阅读 · 0 评论 -
【KGAT】Knowledge Graph Attention Network for Recommendation
- 其实不结合KG,何向南团队之前也直接使用GCN做了NGCF和LightGCN。- KGAT结合KG和GAT,首先是CKG嵌入表示层使用TransR模型获得实体和关系的embedding;然后在attention表示传播层,使用attention求出每个邻居节点的贡献权重,需要把实体节点$h$自身的嵌入表示$e_h$和它基于邻域的嵌入表示$\boldsymbol{e}_{\mathcal{N}_h}$融合起来,得到节点$h$的新表示$\boldsymbol{e}_h^{(1)}$,这里的融合方法也有三种原创 2022-12-24 01:11:22 · 1828 阅读 · 0 评论 -
【知识图谱】(task1)知识图谱概论
- AI主要分为连接主义和符号主义两大学派,知识图谱可以归为后者。- 语言是知识的最主要表示载体,即语言与知识是实现认知只能最重要的两个方面。而知识图谱是一种结构化的知识表示方法,相比于文本更易于被机器查询和处理,在搜索引擎、智能问答、大数据分析中被广泛应用。- 语言和知识的embedding化表示,是当前NN的发展趋势。原创 2022-12-07 20:07:08 · 2226 阅读 · 8 评论 -
【知识图谱】(task2)知识图谱表示
知识图谱的符号表示方法: - 属性图是工业界最常见的图谱建模方法,属性图数据库充分利用图结构特点做了性能优化,实用度高,但不支持符号推理。 - RDF是W3C推动的语义数据交换标准与规范,有更严格的语义逻辑基础,支持推理,并兼容更复杂的本体表示语言OWL。 - 在三元组无法满足语义表示需要时,OWL作为一种完备的本体语言,提供了更多可供选用的语义表达构件。- 描述逻辑可以为知识图谱的表示与建模提供理论基础。描述逻辑之于知识图谱,好比关系代数之于关系数据库;在知识图谱的深度利用中,如复杂语义的表原创 2022-12-10 00:30:04 · 2090 阅读 · 7 评论 -
【知识图谱】(task3)知识图谱的存储和查询
用图数据库的场景: - 高性能关系查询:需要快速遍历许多复杂关系的任何用例,如欺诈检测,社交网络分析,网络和数据库基础设施等; - 模型的灵活性:任何依赖于添加新数据而不会中断现有查询池的用例。模型灵活性包括链接元数据,版本控制数据和不断添加新关系。 - 快速和复杂的分析规则:如子图的比较等这种需要执行复杂的规则时,在推荐、相似度计算和主数据管理等场景。 - 原生图是指采用免索引邻接(Index-free adjacency)构建的图数据库引擎,如: AllegroGraph, Neo4原创 2022-12-13 18:50:13 · 1543 阅读 · 0 评论 -
【知识图谱】(task4)知识图谱的抽取和构建
知识图谱的抽取和构建:实体识别、关系抽取、属性补全、概念抽取、事件识别等任务,深度学习方法上的应用案例。KG必备的入门介绍。原创 2022-12-15 22:04:24 · 1885 阅读 · 2 评论