TensorFlow学习笔记----3.常用函数2

 一.Gradient tape

我们可以在with结构中,使用Gradient tape实现某个函数对指定参数的求导运算 配合上一个文件讲的variable函数可以实现损失函数loss对参数w的求导计算 with结构记录计算过程,gradient求出张量的梯度

with tf.GradientTape()as tape:
     若干个计算过程
grad=tape.gradient(函数,对谁求导)
with tf.GradientTape() as tape:
    w=tf.Variable(tf.constant(3.0))#w的初始值=3
    # 损失函数是w的平方,损失函数对w求导就是2w
    loss=tf.pow(w,2)
grad=tape.gradient(loss,w)
print(grad)

运行结果:

二.enumerate

 enumerate是Python的内建函数,它可遍历每个元素(如列表、元组或字符串),
组合为:索引 元素,常在for循环中使用

enumerate(列表名)

seq=['one','two','three']
for i,element in enumerate(seq):
    print(i,enumerate)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值