视频异常检测
文章平均质量分 91
moluggg
这个作者很懒,什么都没留下…
展开
-
MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection
首先以一定概率将原始数据x矩阵中的部分数据置0,得到丢失数据的残缺输入矩阵x,然后以x为输入,一层一层编码得到压缩后的矩阵y,再通过一层一层编码得到输出x,根据x’和x之间的误差进行网络参数学习和迭代,这样就得到想要的压缩后的编码y。(其实主要处理的是带有异常行为的视频,而正常的数据集一般最终得到的 Y 向量 是全0 或者接近 0 的向量,但是他是怎么做到的正常视频那里变成了全0?而单纯的第一阶段,是一个多实例的学习,输入的数据是带有视频级别的视频,输出是clips级别的异常得分。原创 2023-03-06 12:21:48 · 724 阅读 · 1 评论 -
Video Anomaly Detection by Solving Decoupled Spatio-Temp
视频异常行为检测论文学习原创 2023-02-16 20:32:02 · 292 阅读 · 0 评论