codeforces1492D. Genius‘s Gambit(构造)

题目链接
题目大意:
给你三个整数a,b,k,找两个二进制数X,Y,都有a个0,b个1,使X-Y刚好有k个1.
两个二进制数都必须以1为首

思路:
对于给予的三个数进行不同情形的讨论
第一种情况:k=0时
此时只要两个数相同即可满足条件,输出b个1与a个0两次即可。

第二种情况:0<k ≤ \leq a+b-2时
需要再细分为
情形(1):a=0或b=1
a=0或b=1时,都只能固定生成111111111…(100000000…)X与Y相同,不满足条件。
情形(2):a > 0且b > 1
此时,假如我们有两个n(n=a+b)位的二进制数,假设两者分别为1xxxxxx和1yyyyyy,(这里假设 n=6)由于首位都是1(题目要求),可将两个一相消,变为xxxxx和yyyyy,同时将b作为b-1进行考虑;又由于b-1>0,yyyyy至少为00001,而xxxxx-yyyyy只在为11111时拥有n-1个1,而这显然是不可能的,所以,可知两个二进制数相减的结果,最多拥有n-2个1,又通过观察得到1同同同0-0同同同1的情况下,同同同与同同同相消,可变为10000-1,得1111,满足1的数量为n-2的最优情况,又由a>0且b-1>0可知,必然有至少一个1和0存在,满足构造形式1xxxx0和0xxx1的要求。因此,我们只需要构造上述形式即可,具体方法见代码。

第三种情况:a+b-2<k
由第二种情况的讨论可知,不存在构造方法,能够生成相减数1的个数为n-1或之上的结果,因此该类情况直接舍弃即可。

具体代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>

#define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define ll long long

using namespace std;

int main()
{	
	int a, b, k;
	
	scanf("%d %d %d",&a,&b,&k);
	
	if(a==0||b==1)
	{
		if(k!=0)
		{
			cout << "No" << endl;
		}
		else
		{
			cout << "Yes" << endl;
			
			for(int i=1;i<=b;++i)
			{
				cout << "1";
			}
			
			for(int i=1;i<=a;++i)
			{
				cout << "0";
			}
			
			cout << endl;
			
			for(int i=1;i<=b;++i)
			{
				cout << "1";
			}
			
			for(int i=1;i<=a;++i)
			{
				cout << "0";
			}
			
			cout << endl;
		}
	}
	else
	if(k==0)
	{
		cout << "YES" << endl;
		
		for(int i=1;i<=b;++i)
		{
			cout << "1";
		}
		
		for(int i=1;i<=a;++i)
		{
			cout << "0";
		}
		
		cout << endl;
		
		for(int i=1;i<=b;++i)
		{
			cout << "1";
		}
		
		for(int i=1;i<=a;++i)
		{
			cout << "0";
		}
		
		cout << endl;
	}
	else
	if(k<=a+b-2) 
	{
		cout << "Yes" << endl;
		
		cout << "11";
		
		int flag = 1;
		
		for(int i=1;i<=a+b-2;++i)
		{
			if(flag&&i==k)
			{
				cout << "0";
				
				flag = 0;
			}
			else
			if(i<=a-1)
			{
				cout << "0";
			}
			else
			if(i<=a&&flag==0)
			{
				cout << "0";
			}
			else
			{
				cout << "1";
			}
		}
		
		cout << endl;
		
		cout << "10";
		
		flag = 1;
		
		for(int i=1;i<=a+b-2;++i)
		{
			if(flag&&i==k)
			{
				cout << "1";
				
				flag = 0;
			}
			else
			if(i<=a-1)
			{
				cout << "0";
			}
			else
			if(i<=a&&flag==0)
			{
				cout << "0";
			}
			else
			{
				cout << "1";
			}
		}
		
		cout << endl;
	}
	else
	{
		cout << "NO" << endl;
	}
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值