题目链接
题目大意:
给你三个整数a,b,k,找两个二进制数X,Y,都有a个0,b个1,使X-Y刚好有k个1.
两个二进制数都必须以1为首
思路:
对于给予的三个数进行不同情形的讨论
第一种情况:k=0时
此时只要两个数相同即可满足条件,输出b个1与a个0两次即可。
第二种情况:0<k
≤
\leq
≤ a+b-2时
需要再细分为
情形(1):a=0或b=1
a=0或b=1时,都只能固定生成111111111…(100000000…)X与Y相同,不满足条件。
情形(2):a > 0且b > 1
此时,假如我们有两个n(n=a+b)位的二进制数,假设两者分别为1xxxxxx和1yyyyyy,(这里假设 n=6)由于首位都是1(题目要求),可将两个一相消,变为xxxxx和yyyyy,同时将b作为b-1进行考虑;又由于b-1>0,yyyyy至少为00001,而xxxxx-yyyyy只在为11111时拥有n-1个1,而这显然是不可能的,所以,可知两个二进制数相减的结果,最多拥有n-2个1,又通过观察得到1同同同0-0同同同1的情况下,同同同与同同同相消,可变为10000-1,得1111,满足1的数量为n-2的最优情况,又由a>0且b-1>0可知,必然有至少一个1和0存在,满足构造形式1xxxx0和0xxx1的要求。因此,我们只需要构造上述形式即可,具体方法见代码。
第三种情况:a+b-2<k
由第二种情况的讨论可知,不存在构造方法,能够生成相减数1的个数为n-1或之上的结果,因此该类情况直接舍弃即可。
具体代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define ll long long
using namespace std;
int main()
{
int a, b, k;
scanf("%d %d %d",&a,&b,&k);
if(a==0||b==1)
{
if(k!=0)
{
cout << "No" << endl;
}
else
{
cout << "Yes" << endl;
for(int i=1;i<=b;++i)
{
cout << "1";
}
for(int i=1;i<=a;++i)
{
cout << "0";
}
cout << endl;
for(int i=1;i<=b;++i)
{
cout << "1";
}
for(int i=1;i<=a;++i)
{
cout << "0";
}
cout << endl;
}
}
else
if(k==0)
{
cout << "YES" << endl;
for(int i=1;i<=b;++i)
{
cout << "1";
}
for(int i=1;i<=a;++i)
{
cout << "0";
}
cout << endl;
for(int i=1;i<=b;++i)
{
cout << "1";
}
for(int i=1;i<=a;++i)
{
cout << "0";
}
cout << endl;
}
else
if(k<=a+b-2)
{
cout << "Yes" << endl;
cout << "11";
int flag = 1;
for(int i=1;i<=a+b-2;++i)
{
if(flag&&i==k)
{
cout << "0";
flag = 0;
}
else
if(i<=a-1)
{
cout << "0";
}
else
if(i<=a&&flag==0)
{
cout << "0";
}
else
{
cout << "1";
}
}
cout << endl;
cout << "10";
flag = 1;
for(int i=1;i<=a+b-2;++i)
{
if(flag&&i==k)
{
cout << "1";
flag = 0;
}
else
if(i<=a-1)
{
cout << "0";
}
else
if(i<=a&&flag==0)
{
cout << "0";
}
else
{
cout << "1";
}
}
cout << endl;
}
else
{
cout << "NO" << endl;
}
return 0;
}