AI
文章平均质量分 51
朱雀333
这个作者很懒,什么都没留下…
展开
-
TensorFlow常见任务训练
tf.keras.layers.LSTM(50, return_sequences=True, input_shape=[None, 1]), # LSTM层。Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), # 卷积层。Dense(128, activation='relu'), # 全连接层,128个神经元,激活函数为ReLU。Conv2D(64, (3, 3), activation='relu'), # 卷积层。原创 2024-05-28 03:57:30 · 372 阅读 · 0 评论 -
音频处理库和工具,以及相关开源
这取决于你的应用和所需的特征表示形式。说明: Essentia是一个音乐分析和音频特征提取库,支持多种音频特征提取,包括音高、节拍、旋律、和声和节奏等。说明: Essentia是一个音乐分析和音频特征提取库,支持多种音频特征提取,包括音高、节拍、旋律、和声和节奏等。说明: YAAFE是一个用于音频特征提取的工具箱,它可以从音频文件中提取多种音频特征,并且易于与其他音频处理软件集成。说明: YAAFE是一个用于音频特征提取的工具箱,它可以从音频文件中提取多种音频特征,并且易于与其他音频处理软件集成。原创 2024-02-04 09:14:41 · 1022 阅读 · 0 评论 -
BERT问答模型回答问题
我们从TensorFlow Hub加载了一个预训练的BERT模型,并在其基础上添加了一个简单的问答头部,该头部由两个线性层组成,用于预测答案的起始和结束位置。您可以在BERT模型之上添加一个问答头部,通常是两个线性层,一个用于预测答案的起始位置,另一个用于预测答案的结束位置。这个例子假设您已经有了一个适当格式的训练数据集,其中包含了编码后的输入ids、注意力掩码、以及答案的起始和结束位置。问答(QA)模型通常使用的数据集包含了一系列的问题、上下文(问题的答案所在的文本段落)以及答案在上下文中的确切位置。原创 2024-01-30 03:26:56 · 1204 阅读 · 0 评论 -
训练生成手写体数字 对抗神经网络
下面是一个使用TensorFlow和Keras的生成对抗网络(GAN)的基本示例,用于生成手写体数字。这是一个非常基础的GAN实现,对于实际应用,你可能需要进行很多调整和优化,包括更复杂的模型架构、更细致的训练过程控制、超参数调整等。在这个代码中,首先定义了生成器和判别器的架构,然后将它们结合起来形成一个GAN网络。我没有包括所有可能的最佳实践,如模型保存、加载、超参数调整、日志记录等。函数用于保存生成的图像,以便我们可以查看GAN在训练过程中的进步。函数负责训练过程,它交替地训练判别器和生成器。原创 2024-01-01 22:15:11 · 633 阅读 · 0 评论 -
TensorFlow Hub模型
然后,我们加载了ImageNet的标签文件,这是一个包含1000个类别的列表,与MobileNet V2模型的训练数据集相对应。这些URL可以在TensorFlow Hub的官方网站上找到,每个模型都有一个对应的页面,上面提供了模型的详细信息和使用说明。在使用这些模型时,请确保阅读每个模型的文档,了解它们的输入和输出格式,以及如何正确地使用它们。要使用TensorFlow Hub上的BERT模型来补齐文本中的空白部分,可以使用掩码语言模型(Masked Language Model, MLM)的功能。原创 2024-01-01 22:05:09 · 1804 阅读 · 0 评论 -
图像去噪opencv
在OpenCV中,图像去噪通常可以通过多种方式来实现,包括高斯模糊、中值滤波、双边滤波等。提供完整的参数和中文注释。原创 2023-12-30 12:12:03 · 1211 阅读 · 0 评论 -
tensorflow的unet模型
Unet、Tensorflow原创 2023-09-16 06:29:25 · 907 阅读 · 1 评论 -
智能春联
# encoding:GBK#原创禁止抄袭import requests,jsonhost = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=你的AK&client_secret=你的SK'response = requests.get(host,timeout=20)token=json.loads(response.text)token=token['acc原创 2021-01-22 17:53:50 · 391 阅读 · 0 评论 -
线性回归——————机械学习
#!/usr/bin/python#encoding:utf-8import matplotlib.pyplot as pltfrom scipy import statsx = [5,7,8,7,2,17,2,9,4,11,12,9,6]y = [99,86,87,88,111,86,103,87,94,78,77,85,86]slope, intercept, r, p, std_err = stats.linregress(x, y)def myfunc(x): return .原创 2021-01-22 17:31:06 · 222 阅读 · 0 评论 -
百度智能写诗
# encoding:utf-8#请先去百度自然语言处理里面创建一个应用,开启智能写诗,然后记得AK和SK就行#原创文章,禁止抄袭或转载import requests,json,rehost = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=你的AK&client_secret=你的SK'response = requests.get(host,timeout=原创 2021-01-22 17:29:29 · 1840 阅读 · 0 评论 -
机械学习预估未来GDP
#!/usr/bin/python#encoding:utf-8import numpyimport matplotlib.pyplot as pltprint("本程序中使用机械学习的方法来预估未来值,预测准确性取决于数据和拟合度,未考虑特殊因素")y=[2719450,3567320,4863750,6133990,7181360,7971500,8519550,9056440,10028010,11086310,12171740,13742200,16184020,.原创 2020-11-20 21:54:25 · 382 阅读 · 0 评论 -
selenium实现百度翻译(汉语翻译英语)
from selenium import webdriverfrom selenium.webdriver.chrome.options import Optionsimport timechrome_options = Options()chrome_options.add_argument("--window-size=1920,1080")chrome_options.add_argument('--headless')chrome_options.add_argument('--disa原创 2020-07-05 17:30:23 · 1708 阅读 · 0 评论 -
selenium百度翻译(英语翻译汉语)
from selenium import webdriverfrom selenium.webdriver.chrome.options import Optionsimport timechrome_options = Options()chrome_options.add_argument("--window-size=1920,1080")chrome_options.add_argument('--headless')chrome_options.add_argument('--disa原创 2020-07-05 17:26:37 · 866 阅读 · 0 评论