发现自己并没有真的理解拓扑排序,再次学习了下
拓扑排序要满足如下两个条件
- 每个顶点出现且只出现一次。
- 若A在序列中排在B的前面,则在图中不存在从B到A的路径。
拓扑排序算法
任何无回路的顶点活动网(AOV网)N都可以做出拓扑序列:
- 从N中选出一个入度为0的顶点作为序列的下一顶点。
- 从N网中删除所选顶点及其所有的出边。
- 反复执行上面两个步骤,知道已经选出了图中的所有顶点,或者再也找不到入度为非0的顶点时算法结束。
如果剩下入度非0的顶点,就说明N中有回路,不存在拓扑排序。
存在回路,意味着某些活动的开始要以其自己的完成作为先决条件,这种现象成为活动之间的死锁。一种常见的顶点活动网实例是大学课程的先修课程。课程知识有前后练习,一门课可能以其他课程的知识为基础,学生想选修这门课程时,要看是否已修过所有先修课程。如果存在一个回路的话,那就意味着进入了一个循环,那么该同学就毕不了业了。
因此可以说拓扑排序算法是为了做出满足制约关系的工作安排。
下面我们操作一个实例,如下图是一个有向无环图:
用字典表示:G = { ‘a’:’bce’, ‘b’:’d’,’c’:’d’,’d’:”,’e’:’cd’}
代码实现:<