统计学中第一类错误和第二类错误的区别

转载自我的知乎:
https://www.zhihu.com/question/20993864/answer/3608851818

在这里,我用一系列故事给大家阐述“第一类错误”
第一类错误和第二类错误来自于“数据本身的问题。”
这种现象,笔者个人称之为“数据的致幻作用。”

这就让我想起了一个非常有趣儿的故事。倘若数据是人类的。但是人类驯化小麦的历史也是一部挣扎的历史。为什么这么说?因为小麦这种植物在古代,会寄生一种真菌。这种真菌会产生一种可能会致命的致幻作用。这就是来自于小麦的“幻觉。”

添加图片注释,不超过 140 字(可选)
数据也是一样。数据一旦被统计,就会失真,这就是所谓的“来自于数据的幻觉。”

举个例子。历史上Reader’s digest曾经是美国非常著名的杂志。但是Reader’s digest在一次预测美国总统大选的时候以极大地比例预测失败。为什么?这是因为Reader’s digest在当时统计结果是用电话进行统计的。能装的起电话的家庭在当时的美国都是富人。富人这个群体会投什么样的人的票,其实结果是高度overlap的。

所以有人说统计抽样调查很简单。但是其实统计抽样调查并不简单。它涉及到社会学,经济学,心理学等各个方面。

我们说回到“第一类错误”和“第二类错误”这个地方。这个问题其实用一张表,和一个故事就可以概括。我们假设有这么个场景。A指控B偷吃了一碗粉。

添加图片注释,不超过 140 字(可选)
那么所有的事情,所有的情况分下来,就会有四个情况(仔细想想为什么。以及为什么,这四个概率加起来的和不是1。这一点很重要。):
A被指控吃了粉,他确实吃了粉
A被指控吃了粉,可是他没有吃粉
A没有被指控
A没有被指控吃粉,他确实没有吃粉
在这里,我们需要先了解一个概念,那便是零假设和备择假设。
什么是零假设,什么是备择假设(引用自)?
零假设(Null Hypothesis)和备择假设(Alternative Hypothesis)是统计学中用于假设检验的两个重要概念。
零假设(Null Hypothesis,记作 H0):
零假设是一种初始假设,通常表示“没有差异”或“没有效果”。它是我们在进行统计检验时希望通过数据来检验的默认立场。零假设的目的是假定没有什么特别发生,任何观察到的差异都是由于随机误差或样本波动。
例如,如果我们想知道一种新药是否有效,零假设通常会是“新药对疾病没有效果”。
备择假设(Alternative Hypothesis,记作 H1​):
备择假设与零假设相对立,它表示“有差异”或“有效果”。备择假设代表了研究者的实际研究目标,或希望证明的结论。
例如,在药物实验中,备择假设可能会是“新药对疾病有显著的治疗效果”。
在假设检验中,我们通过数据分析来决定是否拒绝零假设。如果数据提供的证据足够强,我们就会拒绝零假设,支持备择假设;如果证据不够强,我们则无法拒绝零假设。

实际上对这两种假设的分析我们都是从“概率”的角度去看的。这就是假设检验里面著名的5%和1%的“显著性差异”的来源。

具体是怎么解释的呢?这个地方就有一个著名的“女士品茶”的故事。请注意英国人喝茶的方法和中国人不太一样里面要加奶和糖的。而且最古老的时候,茶是用杯子倒在碟子里面喝的。烧砖哥有一套17世纪的巴伐利亚茶具。有机会的话,可以来悉尼找烧砖哥喝茶。当然,那个只用来喝中国人喝茶的办法。在这一点上我是非常坚持中国传统的。

统计学家费希尔的一个女同事,也是藻类学家的缪丽·布里斯托尔,她声称可以判断在奶茶中是先加入茶还是先加入牛奶。费希尔提议给她八杯奶茶。缪丽已知其中四杯先加茶,四杯先加牛奶,但随机排列,而她要说出这八杯奶茶中,哪些先加牛奶,哪些先加茶,检验统计量是确认正确的次数。零假设是她无法判断奶茶中的茶先加入还是牛奶先加入,备择假设为她有此能力。
若单纯以概率考虑(即缪丽没有判断的能力)下,八杯都正确的概率为1/70(因为8选4的组合数是70),约1.43%,因此“拒绝域”为八杯的结果都正确。而测试结果为缪丽八杯的结果都正确,在统计上是相当显著的的结果。也就是说,几乎可以排除她只是恰好猜对结果的可能。

也就是说如果完全靠盲猜,这个女士全部猜对的概率只有1.43%。如果我们取显著度为5%,那毫无疑问这个女士是真的有这个本事。但是如果采用更严格的假设,也就是显著度只有1%的时候,哪怕这个女士猜中了所有八杯茶的顺序,我们也不能说这个女士有辨别先加奶还是先加茶的本事。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值