HCIA-AI V3.5 模拟考试 选择题题库B

个人整理不易,感谢支持

1

卷积后输出特征的深度(channel)由下列那个参数决定?

A.

卷积核的大小

B.

卷积核的数量

C.

卷积核的深度

D.

原始数据的深度

正确答案:D

2

假设原图size100*100,经过一个卷积核size5*5stride=3的卷积层之后,输出的特征图上每个点在原图上的局部感受野是以下哪个选项?

A.

3

B.

5

C.

8

D.

11

正确答案:B

3

Relu函数在深度学习神经网络中经常被用到,以下哪项是该函数的取值范围?

A.

[0,+∞)

B.

[0,1]

C.

[-1,1]

D.

[-1,0]

正确答案:A

4

输入一个32x32的图像,用大小为5x5的卷积核进行做步长为一的卷积计算,输出的图像尺寸为以下哪个选项?

A.

28x28

B.

29x29

C.

28x23

D.

23x23

正确答案:A

5

在不考虑正则项的情况下,SVM中的支持向量是由哪些点组成的?

A.

落在分割超平面上的点

B.

距离分割超平面最远的点

C.

距离分割超平面最近的点

D.

某一类别的点

正确答案:C

6

计算机通过具有标签的图片数据学习分辨哪些图片是苹果,哪些图片是梨,这一场景最符合以下哪一类型的学习?

A.

监督学习

B.

无监督学习

C.

半监督学习

D.

强化学习

正确答案:A

7

以下关于机器学习中分类模型与回归模型的说法,哪一项说法是正确的?

A.

输出变量为有限个离散变量的预测问题是回归问题;输出变量为连续变量的预测问题是分类问题。

B.

对回归问题和分类问题的评价,最常用的指标都是准确率和召回率。

C.

回归问题和分类问题都有可能发生过拟合。

D.

逻辑回归是一种典型的回归模型。

正确答案:C

8

核函数允许算法在变换后的高维特征空间中拟合最大的超平面,以下选项中不是常见核函数的是哪一项?

A.

线性核函数

B.

多项式核函数

C.

高斯核函数

D.

泊松核函数

正确答案:D

9

On-Device执行,即整图卸载执行,充分发挥昇腾芯片的算力,可以大大降低交互的开销,从而提升加速器占用率,关于On-Device执行以下描述错误的是?

A.

超强芯片算力下模型执行的挑战: 内存墙问题、交互开销大、数据供给难。部分在Host执行,部分在Device执行,交互开销甚至远大于执行开销,导致加速器占用率低

B.

MindSpore通过面向芯片的深度图优化技术,同步等待少,最大化数据-计算-通信的并行度,训练性能相比Host侧图调度方式持平

C.

超强芯片算力下分布式梯度聚合的挑战: ResNet50单迭代20ms时间时会产生中心控制的同步开销和频繁同步的通信开销。传统方法需要3次同步完成All Reduce,数据驱动方法自主All Reduce,无控制开销

D.

MindSpore通过梯度数据驱动的自适应图优化,实现去中心化的自主All Reduce,梯度聚合步调一致,计算与通信充分流水

正确答案:B

10

在昇腾AI软件栈中,MindStudio属于以下哪一种类别?

A.

管理运维工具

B.

全流程开发工具链

C.

异构计算架构

D.

深度学习框架

正确答案:B

11

以下哪一项不是华为云医疗智能体覆盖的领域?

A.

基因组

B.

诊断治疗

C.

临床研究

D.

药物研发

正确答案:B

12

MindSpore中有一个4*3*32*32Tensor x,通过什么样的方式可以查看该Tensor的维数?

A.

x.size

B.

x.shape

C.

x.ndim

D.

x.strides

正确答案:C

13

MindSpore中用于保存模型权重的接口是以下哪个选项?

A.

mindspore.save_checkpoint(model, "model.ckpt")

B.

mindspore.load_checkpoint("model.ckpt")

C.

mindspore.load_param_into_net(model, param_dict)

D.

mindspore.ops.no_gradient

正确答案:A

14

MindSpore训练的时候,为了方便查看网络模型损失值、当前训练轮次时间等信息,需要用到以下哪个选项?

A.

model.train

B.

nn.ops

C.

callback.LossMonitor

D.

dataset.Mnist

正确答案:C

15

TensorFlow中使用什么来描述计算过程?

A.

参数

B.

会话

C.

数据流图

D.

张量

正确答案:C

16

某厂家想要生产一批虚拟助理以供医院使用,而对于虚拟助理来说,声纹识别主要涉及到以下哪一项技术?

A.

语音识别和处理技术

B.

图像识别与处理技术

C.

专家系统与知识图谱技术

D.

图像生成与增强技术

正确答案:A

17

批量推理是对批量数据进行推理的批量作业,使用批量推理之前,不需要对模型进行训练。关于上述描述,以下哪一个说法是正确的?

A.

该描述正确,批量推理就是不需要再训练了。

B.

该描述正确,推理意味着训练结束。

C.

该描述错误,推理之前要对模型进行训练才可以。

D.

该描述错误,批量推理不需要训练操作。

正确答案:C

18

以下哪项不属于人工智能前沿应用技术?

A.

扩散模型

B.

强化学习

C.

SDN

D.

无人驾驶

正确答案:C

19

深度学习中,以下哪些方法可以降低模型过拟合?

A.

增加更多训练样本

B.

Dropout

C.

增大模型复杂度,提高在训练集上的效果

D.

增加参数惩罚

正确答案:ABD

20

以下数据增强方法可以用于图像数据的有哪些选项?

A.

翻转

B.

裁剪

C.

随机插值

D.

语义替换

正确答案:ABC

21

softmax函数在分类任务中经常被使用,下列关于softmax函数的描述,哪些选项是正确的?

A.

softmax函数又称作归一化指数函数

B.

Softmax 回归模型是解决二分类回归问题的算法

C.

是二分类函数sigmoid的推广

D.

softmax函数经常与交叉熵损失函数联合使用

正确答案:ACD

22

下面哪些是训练模型时会定义的超参数?

A.

训练轮次(epoch

B.

批次大小(batch size

C.

学习率(learning rate

D.

损失值(loss

正确答案:ABC

23

以下关于数据集的描述中,哪些选项是正确的?

A.

在机器学习任务中使用的一组数据,其中的每一个数据称为一个样本。

B.

反映样本在某方面的表现或性质的事项或属性称为特征。

C.

训练过程中使用的数据集中的每个样本称为训练样本。

D.

从数据中学得模型的过程称为学习(训练)。

正确答案:ABCD

24

以下关于数据预处理的描述中,哪些选项是正确的?

A.

数据清理包含填充缺失值,发现并消除噪声数据及异常点。

B.

数据降维简化数据属性,避免维度爆炸。

C.

数据标准化通过标准化数据来减少噪声,以及提高模型准确性。

D.

机器学习最后输出的结果需要借助模型,因此训练模型比数据预处理更重要。

正确答案:ABC

25

以下关于模型中参数与超参数的描述中,哪些选项是正确的?

A.

模型中不但有参数,还有超参数的存在。

B.

超参数由模型自动学习。

C.

超参数由人工手动设定。

D.

可以使用超参数来控制训练。

正确答案:ACD

26

以下哪些选项属于终端设备上所使用的AI芯片特征?

A.

高功耗

B.

高能效

C.

低延迟

D.

低成本

正确答案:BCD

27

MindSpore支持端--云按需协作的关键技术包括?

A.

统一模型IR

B.

软硬协同的图优化技术

C.

端云协同Federal Meta Learning

D.

集中式架构

正确答案:ABC

28

MindSpore构建Tensor的方式有以下哪些选项?

A.

根据数据直接生成

B.

NumPy数组生成

C.

Scipy直接生成

D.

使用init初始化器构造张量

正确答案:ABD

29

以下哪些是 MindSpore Tensor 常见的操作?

A.

switch()

B.

size()

C.

asnumpy(

D.

max()

正确答案:BCD

30

MindData子系统的运行流程主要包括以下哪些步骤?

A.

数据图生成

B.

数据图解耦

C.

数据图执行

D.

数据导入Device

正确答案:ACD

31

以下哪些框架原生支持分布式深度学习框架?

A.

TensorFlow

B.

MindSpore

C.

CNDK

D.

MXNet


正确答案:ABD

32

目前关于AI的应用技术方向,描述正确的有哪几项?

A.

计算机视觉是研究如何让计算机的科学。

B.

语音处理是研究语音发声过程、语音信号的统计特性、语音识别、机器合成以及语音感知等各种处理技术的统称。

C.

自然语言处理是利用计算机技术来理解并运用自然语言的学科。

D.

自动驾驶不需要用到语音处理和计算机视觉的技术。

正确答案:ABC

33

下面有关AI应用领域的描述正确的有哪些选项?

A.

智能家居,运用了物联网、语音识别等技术。

B.

智慧医疗,运用了计算机视觉、数据挖掘等AI技术。

C.

智慧城市,是一门综合学科,几乎涵盖AI常用三大方向,语音、NLP和计算机视觉。

D.

智慧教育,基本特征是开放、共享、交互、协作、泛在。以教育信息化促进教育现代化,用信息技术改变传统模式。

正确答案:ABCD

34

AI相关硬件的发展趋势主要包括以下哪几项?

A.

单核计算密度减小。

B.

带宽提高,工艺提升,核数增加,多硅片封装。

C.

SIMD广泛应用,Tensor Core处理规模变大。

D.

支持新数据类型,片内片间高速互联,支持虚拟化。


正确答案:BCD

### 回答1: HCIA-AI院校课程的期末测试题库包含了与人工智能相关的各个方面的知识和技能。该题库的目的是测试学生对人工智能基础知识、算法、模型和应用的理解程度,以及他们在实际应用中解决问题的能力。 题库的内容涵盖了人工智能的基本概念、机器学习、深度学习、自然语言处理、图像处理、数据挖掘等方面的内容。测试题目的形式多样,包括选择题、填空题、简答题和实践题等。通过这些题目,学生被要求展示他们对基本概念的理解、算法和模型的掌握程度以及独立解决问题的能力。 学生可以通过参加该测试来检验他们在课程中所学知识的掌握情况,并了解自己在人工智能领域中的能力水平。对于准备参加HCIA-AI认证的学生来说,期末测试题库也可以作为备考的重要参考资料。通过解答题库中的问题,学生可以熟悉考试的题型和考察的知识重点,提前了解自己的薄弱环节并进行针对性的复习,从而提高考试的准备和应对能力。 总而言之,HCIA-AI院校课程期末测试题库是一个综合性的考试资料,旨在测试学生对人工智能知识和技能的掌握情况,并为学生提供备考参考。通过参加测试和认真复习,学生可以在人工智能领域中取得更好的学习成果和职业发展机会。 ### 回答2: HCIA-AI院校课程期末测试题库是为了评估学生对于人工智能领域知识的掌握程度而设计的。该题库包含了各种涉及人工智能的理论和实践方面的题目。 首先,题库中会涉及人工智能的基础知识,包括机器学习、深度学习、自然语言处理等。学生需要了解这些领域的基本原理和算法,并能够应用到实际问题中。 其次,题库还会涉及到人工智能的应用领域,比如图像识别、语音识别、智能推荐等。学生需要了解在这些领域中的最新技术和研究进展,并能够分析和解决相关的问题。 此外,题库中还可能包含一些编程题,要求学生能够使用编程语言实现人工智能算法或者模型。这些题目旨在考察学生的编程能力和实现人工智能算法的能力。 最后,该题库还将涵盖一些开放性问题,要求学生能够进行批判性思考和创新性思考,提供个人观点和解决方案。 综上所述,HCIA-AI院校课程期末测试题库全面覆盖了人工智能领域的基础知识、应用能力和问题解决能力。学生通过完成这些题目,可以深入理解人工智能的相关概念和技术,培养他们在人工智能领域的专业能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值