1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0
4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20 可以这样查询:
select id from t where num=10 union all select id from t where num=20
5、下面的查询也将导致全表扫描:(不能前置百分号)
select id from t where name like ‘?c%’ 若要提高效率,可以考虑全文检索。
6、in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num 可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100 应改为:
select id from t where num=100*2
9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’–name以abc开头的id
select id from t where
datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id 应改为:
select id from t where name like ‘abc%’ select id from t where
createdate>=’2005-11-30′ and createdate<’2005-12-1′
10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。
12、不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:create table #t(…)
13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21、避免频繁创建和删除临时表,以减少系统表资源的消耗。
22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。
23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30、尽量避免大事务操作,提高系统并发能力。
31、EXPLAIN
做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划。
下面来个简单的示例,标注(1,2,3,4,5)我们要重点关注的数据
type列,连接类型。一个好的sql语句至少要达到range级别。杜绝出现all级别
key列,使用到的索引名。如果没有选择索引,值是NULL。可以采取强制索引方式 key_len列,索引长度
rows列,扫描行数。该值是个预估值 extra列,详细说明。注意常见的不太友好的值有:Using filesort, Using
temporary
32、SQL语句中IN包含的值不应过多
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from table_name where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。
33、SELECT语句务必指明字段名称
SELECT *增加很多不必要的消耗(cpu、io、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。
34、当只需要一条数据的时候,使用limit 1
这是为了使EXPLAIN中type列达到const类型
35、如果排序字段没有用到索引,就尽量少排序
36、如果限制条件中其他字段没有索引,尽量少用or
or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用 union all 或者是union(必要的时候)的方式来代替“or”会得到更好的效果
37、尽量用union all代替union
union和union all的差异主要是前者需要将结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的CPU运算,加大资源消耗及延迟。当然,union all的前提条件是两个结果集没有重复数据。
38、不使用ORDER BY RAND()
select id from
table_name
order by rand() limit 1000;
上面的sql语句,可优化为select id from
table_name
t1 join (select rand() * (select max(id)fromtable_name
) as nid) t2 ont1.id > t2.nid limit 1000;
39、区分in和exists, not in和not exists
select * from 表A where id in (select id from 表B)
上面sql语句相当于select * from 表A where exists(select * from 表B where 表B.id=表A.id)
区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询。所以IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。
关于not in和not exists,推荐使用not exists,不仅仅是效率问题,not
in可能存在逻辑问题。如何高效的写出一个替代not exists的sql语句?原sql语句
select colname … from A表 where a.id not in (select b.id from B表)
高效的sql语句select colname … from A表 Left join B表 on where a.id = b.id where b.id
is null 取出的结果集如下图表示,A表不在B表中的数据
40、使用合理的分页方式以提高分页的效率
select id,name from table_name limit 866613, 20
使用上述sql语句做分页的时候,可能有人会发现,随着表数据量的增加,直接使用limit分页查询会越来越慢。
优化的方法如下:可以取前一页的最大行数的id,然后根据这个最大的id来限制下一页的起点。比如此列中,上一页最大的id是866612。sql可以采用如下的写法:
select id,name from table_name where id> 866612 limit 20
41、分段查询
在一些用户选择页面中,可能一些用户选择的时间范围过大,造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段进行查询,循环遍历,将结果合并处理进行展示。
如下图这个sql语句,扫描的行数成百万级以上的时候就可以使用分段查询
42、避免在 where 子句中对字段进行 null 值判断
对于null的判断会导致引擎放弃使用索引而进行全表扫描。
43、不建议使用%前缀模糊查询
例如LIKE “%name”或者LIKE “%name%”,这种查询会导致索引失效而进行全表扫描。但是可以使用LIKE “name%”。
那如何查询%name%?
如下图所示,虽然给secret字段添加了索引,但在explain结果果并没有使用
那么如何解决这个问题呢,答案:使用全文索引
在我们查询中经常会用到select id,fnum,fdst from table_name where user_name like ‘%zhangsan%’; 。这样的语句,普通索引是无法满足查询需求的。庆幸的是在MySQL中,有全文索引来帮助我们。
创建全文索引的sql语法是:
ALTER TABLE table_name
ADD FULLTEXT INDEX idx_user_name
(user_name
);
使用全文索引的sql语句是:
select id,fnum,fdst from table_name where match(user_name) against(‘zhangsan’ in boolean mode);
注意:在需要创建全文索引之前,请联系DBA确定能否创建。同时需要注意的是查询语句的写法与普通索引的区别
44、避免在where子句中对字段进行表达式操作
比如
select user_id,user_project from table_name where age*2=36;
中对字段就行了算术运算,这会造成引擎放弃使用索引,建议改成
select user_id,user_project from table_name where age=36/2;
45、避免隐式类型转换
where 子句中出现 column 字段的类型和传入的参数类型不一致的时候发生的类型转换,建议先确定where中的参数类型
46、对于联合索引来说,要遵守最左前缀法则
举列来说索引含有字段id,name,school,可以直接用id字段,也可以id,name这样的顺序,但是name;school都无法使用这个索引。所以在创建联合索引的时候一定要注意索引字段顺序,常用的查询字段放在最前面
47、必要时可以使用force index来强制查询走某个索引
有的时候MySQL优化器采取它认为合适的索引来检索sql语句,但是可能它所采用的索引并不是我们想要的。这时就可以采用force index来强制优化器使用我们制定的索引。
48、注意范围查询语句
对于联合索引来说,如果存在范围查询,比如between,>,<等条件时,会造成后面的索引字段失效。
49、关于JOIN优化
LEFT JOIN A表为驱动表
INNER JOIN MySQL会自动找出那个数据少的表作用驱动表
RIGHT JOIN B表为驱动表
注意:MySQL中没有full join,可以用以下方式来解决
select * from A left join B on B.name = A.name where B.name is null
union all select * from B;
尽量使用inner join,避免left join
参与联合查询的表至少为2张表,一般都存在大小之分。如果连接方式是inner join,在没有其他过滤条件的情况下MySQL会自动选择小表作为驱动表,但是left join在驱动表的选择上遵循的是左边驱动右边的原则,即left join左边的表名为驱动表。
合理利用索引
被驱动表的索引字段作为on的限制字段。
利用小表去驱动大表
从原理图能够直观的看出如果能够减少驱动表的话,减少嵌套循环中的循环次数,以减少 IO总量及CPU运算的次数。
巧用STRAIGHT_JOIN
inner join是由mysql选择驱动表,但是有些特殊情况需要选择另个表作为驱动表,比如有group by、order
by等「Using filesort」、「Using
temporary」时。STRAIGHT_JOIN来强制连接顺序,在STRAIGHT_JOIN左边的表名就是驱动表,右边则是被驱动表。在使用STRAIGHT_JOIN有个前提条件是该查询是内连接,也就是inner
join。其他链接不推荐使用STRAIGHT_JOIN,否则可能造成查询结果不准确。
这个方式有时可能减少3倍的时间。