分布式系统面临的问题
多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它微服务,如果某个链路上的某个微服务的响应时间过长或者服务不可用,对微服务A的调用就会占用越来越多的系统资源,从而引起系统崩溃。如果某个微服务并发访问比较高,一旦这个服务宕机了。所有的请求依然会打到这台服务上面,客户端就会一直等待服务返回结果。此时这个服务就耗尽整个线程资源,导致整个系统发生更多的级联故障。所以我们需要对服务的故障和延迟进行隔离和管理,以便于即使单个服务故障,也不会影响整个系统。
Hystrix断路器
为了解决上面的问题,所有我们今天要学习一个新的微服务组件Hystrix。这个Hystrix是什么呢?Hystrix是一个处理分布式系统额延迟和容错的开源库,在分布式系统里面,许多依赖不可避免的会调用失败,比如超时、异常等。Hystrix能够保证在一个依赖出现问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。“断路器”本身就是一种开关装置,当某个服务单元发生故障之后,通过断路器 的故障监控,向调用返回一个符号预期的、备选方案,而不是长时间的等待或者抛出调用方无法处理异常,这样就保证了服务调用的线程不会被长时间、不必要的地占用,从而避免了故障在分布式系统中的蔓延,甚至系统雪崩。
Hystrix可以做什么
- 资源隔离: 让你的系统,在故障的情况下,不会耗尽系统所有的资源,比如线程资源。
- 限流: 高并发的流量涌入进来,比如说突然间一秒钟100万QPS,10万QPS进入系统,其他90万QPS被拒绝了。
- 熔断: 系统后端的一些依赖,出了一些故障,比如说mysql挂掉了,每次请求都是报错的,熔断了,后续的请求过来直接不接收了,拒绝访问,10分钟之后再尝试去看看mysql恢复没有。
- 降级: mysql挂了,系统发现了,自动降级,从内存里存的少量数据中,去提取一些数据出来。
Histrix的网地址: https://github.com/Netflix/Hystrix/wiki/How-To-Use
项目整合Hystrix
新建Module, pcloud-provider-hystrix-user8005
修改pom文件:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<artifactId>pcloud</artifactId>
<groupId>com.younger.springcloud</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<groupId>com.younger.springcloud</groupId>
<artifactId>pcloud-provider-hystrix-user8005</artifactId>
<version>1.0-SNAPSHOT</version>
<name>pcloud-provider-hystrix-user8005</name>
<dependencies>
<!--hystrix-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
<!--eureka client-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<!--web-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.younger.springcloud</groupId>
<artifactId>pcloud-api-commons</artifactId>
<version>${project.version}</version>
</dependency>
</dependencies>
</project>
新增 application.yml文件
server:
port: 8005
spring:
application:
name: pcloud-provider-hystrix-user
eureka:
client:
register-with-eureka: true
fetch-registry: true
service-url:
defaultZone: http://eureka6001:6001/eureka/
编写启动类:UserHystrixMain8005
package com.younger.springcloud;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
@SpringBootApplication
@EnableDiscoveryClient
public class UserHystrixMain8005 {
public static void main(String[] args) {
SpringApplication.run(UserHystrixMain8005.class,args);
}
}
编写 service、controller
UserService类:
package com.younger.springcloud.service;
import org.springframework.stereotype.Service;
@Service
public class UserService {
/**
* 正常访问
* @return
*/
public String success() {
return "访问成功";
}
/**
* 超时访问
* @return
*/
public String timeOut() {
try {
Thread.sleep(3*1000);
}catch (Exception e) {
e.printStackTrace();
}
return "超时访问";
}
}
UserController类
package com.younger.springcloud.controller;
import com.younger.springcloud.service.UserService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class UserController {
@Autowired
private UserService userService;
@Value("${server.port}")
private String serverPort;
@GetMapping("/user/hystrix/ok")
public String success() {
return userService.success();
}
@GetMapping("/user/hystrix/timeOut")
public String timeOut() {
return userService.timeOut();
}
}
启动项目,我们先测试下项目是否正常
启动 6001、8005
http://localhost:8005/user/hystrix/ok
http://localhost:8005/user/hystrix/timeOut
每次调用都耗时3s
上面接口访问都是非高并发的场景下访问的,返回都比较正常,接下来我们需要通过Jemeter进行压力测试了,看下会发生什么
Jmeter压测测试
大家可以到Jemeter官网下载:http://jmeter.apache.org/,以为我本机已经下载配置好了。大家可以查阅相关资料进行配置。
点击 这个启动就可以了。
1、添加本次测试计划 (右键–>Add–>Threads(Users)–>Thread group)
2、设置线程数 (所谓线程数就是并发用户数)
3、添加协议及相关配置信息
我先开启20000个并发同时 /user/hystrix/timeOut 接口。
点击这个按钮
我们在访问这个正常的接口
http://localhost:8005/user/hystrix/ok
发现这个请求并没有直接返回结果,而是要等待一会才可以返回。
Jmeter压测结论
上面还是服务提供者8005自己测试,假如此时外部的消费者80也来访问,那这个消费者只能一直等着,并且服务端8005直接被拖死。
我们现在把消费者也加入进来,新建Module pcloud-consumer-hystrix-Login80
修改pom文件:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<artifactId>pcloud</artifactId>
<groupId>com.younger.springcloud</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<groupId>com.younger.springcloud</groupId>
<artifactId>pcloud-consumer-hystrix-Login80</artifactId>
<version>1.0-SNAPSHOT</version>
<name>pcloud-consumer-hystrix-Login80</name>
<dependencies>
<!--openfeign-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
<!--hystrix-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
<!--eureka client-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<!--web-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<!--一般基础通用配置-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.younger.springcloud</groupId>
<artifactId>pcloud-api-commons</artifactId>
<version>${project.version}</version>
</dependency>
</dependencies>
</project>
新增 application.yml文件
server:
port: 80
eureka:
client:
register-with-eureka: true
service-url:
defaultZone: http://eureka6001:6001/eureka/
新增启动类 LoginHystrixMain80
package com.younger.springcloud;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.openfeign.EnableFeignClients;
@SpringBootApplication
@EnableFeignClients
public class LoginHystrixMain80 {
public static void main(String[] args) {
SpringApplication.run(LoginHystrixMain80.class, args);
}
}
新增service、controller
UserHystrixService 类:
package com.younger.springcloud.service;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.stereotype.Component;
import org.springframework.web.bind.annotation.GetMapping;
@Component
@FeignClient("PCLOUD-PROVIDER-HYSTRIX-USER")
public interface UserHystrixService {
@GetMapping("/user/hystrix/ok")
String success();
@GetMapping("/user/hystrix/timeOut")
String timeOut();
}
LoginHystrixController类
package com.younger.springcloud.controller;
import com.younger.springcloud.service.UserHystrixService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class LoginHystrixController {
@Autowired
private UserHystrixService userHystrixService;
@GetMapping("/consumer/login/hystrix/ok")
public String success() {
return userHystrixService.success();
}
@GetMapping("/consumer/login/hystrix/timeOut")
public String timeOut() {
return userHystrixService.timeOut();
}
}
启动项目正常测试:
测试:http://localhost:80/consumer/login/hystrix/ok
高并发测试
2W个线程压8005,
测试:http://localhost:80/consumer/login/hystrix/ok
导致故障现象原因
8005 中同一服务中的接口服务被困死,因为Tomcat线程池里面的工作线程已经被占用完了。此时80 调用 8005,客户端访问响应很缓慢。
上述问题要如何解决呢?
1、修改8005服务
package com.younger.springcloud.service;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixProperty;
import org.springframework.stereotype.Service;
@Service
public class UserService {
/**
* 正常访问
* @return
*/
public String success() {
return "访问成功";
}
/**
* 超时访问, 设置超时时长3s,如果超过3s中 就进行服务降级
* @return
*/
@HystrixCommand(fallbackMethod = "timeOutHandler",commandProperties = {
@HystrixProperty(name="execution.isolation.thread.timeoutInMilliseconds",value = "3000")
})
public String timeOut() {
try {
Thread.sleep(5*1000);
}catch (Exception e) {
e.printStackTrace();
}
return "超时访问";
}
/**
* 服务降级方法
* @return
*/
public String timeOutHandler() {
return "进行服务降级处理";
}
}
启动类上面 新增注解 @EnableCircuitBreaker
2、LoginHystrixMain80 服务也可以做服务降级
修改yml文件
server:
port: 80
eureka:
client:
register-with-eureka: true
service-url:
defaultZone: http://eureka6001:6001/eureka/
feign:
hystrix:
enabled: true
修改启动类:
测试验证:
启动服务:
http://localhost:80/consumer/login/hystrix/timeOut
不知道大家有没有发现,我们的每一个业务方法都有一个兜底的方法,这样会导致业务代码膨胀。所以我们需要把这些兜底的方法统一起来。
1、配置统一的降级方法(这个用的比较少)我们演示一下:
2、服务降级处理一般是在客户端80实现完成的,与服务端8005没有关系。所以只需要为Feign客户端定义的接口添加一个服务降级处理的实现类即可实现解耦。
UserFallbackService类:
package com.younger.springcloud.service;
import org.springframework.stereotype.Component;
@Component
public class UserFallbackService implements UserHystrixService {
@Override
public String success() {
return "服务降级";
}
@Override
public String timeOut() {
return "服务降级";
}
}
项目测试:
启动服务:
测试地址:http://localhost:80/consumer/login/hystrix/ok
关闭服务8005
测试地址:http://localhost:80/consumer/login/hystrix/ok
服务熔断
熔断机制是应对雪崩效应的一种微服务链路保护机制。当链路的某个微服务出错不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回错误的响应信息。在Spring Cloud框架里,熔断机制通Hystrix实现。Hystrix会监控微服务间调用的状况,当失败的调用到一定阈值,缺省是5秒内20次调用失败,就会启动熔断机制,熔断机制的注解是@HystrixCommand。
服务熔断测试
修改pcloud-provider-hystrix-user8005
@HystrixCommand(fallbackMethod = "timeOutHandler",commandProperties = {
@HystrixProperty(name = "circuitBreaker.enabled",value = "true"), //开启断路器
@HystrixProperty(name = "circuitBreaker.requestVolumeThreshold",value = "10"), // 请求总数阀值
@HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",value = "10000"), // 快照时间窗
@HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",value = "50"), // 错误百分比阀值
})
public String circuitBreaker(Integer num) {
if (num < 0) {
throw new RuntimeException("出错了!!!");
}
return "调用成功";
}
这里面涉及到断路器的三个重要参数:快照时间窗、请求总数阀值、错误百分比阀值。
1:快照时间窗:断路器确定是否打开需要统计一些请求和错误数据,而统计的时间范围就是快照时间窗,默认为最近的10秒。
2:请求总数阀值:在快照时间窗内,必须满足请求总数阀值才有资格熔断。默认为20,意味着在10秒内,如果该hystrix命令的调用次数不足20次,即使所有的请求都超时或其他原因失败,断路器都不会打开。
3:错误百分比阀值:当请求总数在快照时间窗内超过了阀值,比如发生了30次调用,如果在这30次调用中,有15次发生了超时异常,也就是超过50%的错误百分比,在默认设定50%阀值情况下,这时候就会将断路器打开。
@GetMapping("/user/hystrix/circuitBreaker/{id}")
public String circuitBreaker(@PathVariable("id") Integer id) {
return userService.circuitBreaker(id);
}
测试:
启动项目:
我们先连续访问 http://localhost:8005/user/hystrix/circuitBreaker/-1 速度要快一点
接着访问 http://localhost:8005/user/hystrix/circuitBreaker/1
发现服务出现熔断了,我们过一会在访问
http://localhost:8005/user/hystrix/circuitBreaker/1
发现服务又恢复正常了。
Hystrix 所有配置参数
@HystrixCommand(fallbackMethod = "str_fallbackMethod",
groupKey = "strGroupCommand",
commandKey = "strCommand",
threadPoolKey = "strThreadPool",
commandProperties = {
// 设置隔离策略,THREAD 表示线程池 SEMAPHORE:信号池隔离
@HystrixProperty(name = "execution.isolation.strategy", value = "THREAD"),
// 当隔离策略选择信号池隔离的时候,用来设置信号池的大小(最大并发数)
@HystrixProperty(name = "execution.isolation.semaphore.maxConcurrentRequests", value = "10"),
// 配置命令执行的超时时间
@HystrixProperty(name = "execution.isolation.thread.timeoutinMilliseconds", value = "10"),
// 是否启用超时时间
@HystrixProperty(name = "execution.timeout.enabled", value = "true"),
// 执行超时的时候是否中断
@HystrixProperty(name = "execution.isolation.thread.interruptOnTimeout", value = "true"),
// 执行被取消的时候是否中断
@HystrixProperty(name = "execution.isolation.thread.interruptOnCancel", value = "true"),
// 允许回调方法执行的最大并发数
@HystrixProperty(name = "fallback.isolation.semaphore.maxConcurrentRequests", value = "10"),
// 服务降级是否启用,是否执行回调函数
@HystrixProperty(name = "fallback.enabled", value = "true"),
// 是否启用断路器
@HystrixProperty(name = "circuitBreaker.enabled", value = "true"),
// 该属性用来设置在滚动时间窗中,断路器熔断的最小请求数。例如,默认该值为 20 的时候,
// 如果滚动时间窗(默认10秒)内仅收到了19个请求, 即使这19个请求都失败了,断路器也不会打开。
@HystrixProperty(name = "circuitBreaker.requestVolumeThreshold", value = "20"),
// 该属性用来设置在滚动时间窗中,表示在滚动时间窗中,在请求数量超过
// circuitBreaker.requestVolumeThreshold 的情况下,如果错误请求数的百分比超过50,
// 就把断路器设置为 "打开" 状态,否则就设置为 "关闭" 状态。
@HystrixProperty(name = "circuitBreaker.errorThresholdPercentage", value = "50"),
// 该属性用来设置当断路器打开之后的休眠时间窗。 休眠时间窗结束之后,
// 会将断路器置为 "半开" 状态,尝试熔断的请求命令,如果依然失败就将断路器继续设置为 "打开" 状态,
// 如果成功就设置为 "关闭" 状态。
@HystrixProperty(name = "circuitBreaker.sleepWindowinMilliseconds", value = "5000"),
// 断路器强制打开
@HystrixProperty(name = "circuitBreaker.forceOpen", value = "false"),
// 断路器强制关闭
@HystrixProperty(name = "circuitBreaker.forceClosed", value = "false"),
// 滚动时间窗设置,该时间用于断路器判断健康度时需要收集信息的持续时间
@HystrixProperty(name = "metrics.rollingStats.timeinMilliseconds", value = "10000"),
// 该属性用来设置滚动时间窗统计指标信息时划分"桶"的数量,断路器在收集指标信息的时候会根据
// 设置的时间窗长度拆分成多个 "桶" 来累计各度量值,每个"桶"记录了一段时间内的采集指标。
// 比如 10 秒内拆分成 10 个"桶"收集这样,所以 timeinMilliseconds 必须能被 numBuckets 整除。否则会抛异常
@HystrixProperty(name = "metrics.rollingStats.numBuckets", value = "10"),
// 该属性用来设置对命令执行的延迟是否使用百分位数来跟踪和计算。如果设置为 false, 那么所有的概要统计都将返回 -1。
@HystrixProperty(name = "metrics.rollingPercentile.enabled", value = "false"),
// 该属性用来设置百分位统计的滚动窗口的持续时间,单位为毫秒。
@HystrixProperty(name = "metrics.rollingPercentile.timeInMilliseconds", value = "60000"),
// 该属性用来设置百分位统计滚动窗口中使用 “ 桶 ”的数量。
@HystrixProperty(name = "metrics.rollingPercentile.numBuckets", value = "60000"),
// 该属性用来设置在执行过程中每个 “桶” 中保留的最大执行次数。如果在滚动时间窗内发生超过该设定值的执行次数,
// 就从最初的位置开始重写。例如,将该值设置为100, 滚动窗口为10秒,若在10秒内一个 “桶 ”中发生了500次执行,
// 那么该 “桶” 中只保留 最后的100次执行的统计。另外,增加该值的大小将会增加内存量的消耗,并增加排序百分位数所需的计算时间。
@HystrixProperty(name = "metrics.rollingPercentile.bucketSize", value = "100"),
// 该属性用来设置采集影响断路器状态的健康快照(请求的成功、 错误百分比)的间隔等待时间。
@HystrixProperty(name = "metrics.healthSnapshot.intervalinMilliseconds", value = "500"),
// 是否开启请求缓存
@HystrixProperty(name = "requestCache.enabled", value = "true"),
// HystrixCommand的执行和事件是否打印日志到 HystrixRequestLog 中
@HystrixProperty(name = "requestLog.enabled", value = "true"),
},
threadPoolProperties = {
// 该参数用来设置执行命令线程池的核心线程数,该值也就是命令执行的最大并发量
@HystrixProperty(name = "coreSize", value = "10"),
// 该参数用来设置线程池的最大队列大小。当设置为 -1 时,线程池将使用 SynchronousQueue 实现的队列,
// 否则将使用 LinkedBlockingQueue 实现的队列。
@HystrixProperty(name = "maxQueueSize", value = "-1"),
// 该参数用来为队列设置拒绝阈值。 通过该参数, 即使队列没有达到最大值也能拒绝请求。
// 该参数主要是对 LinkedBlockingQueue 队列的补充,因为 LinkedBlockingQueue
// 队列不能动态修改它的对象大小,而通过该属性就可以调整拒绝请求的队列大小了。
@HystrixProperty(name = "queueSizeRejectionThreshold", value = "5"),
}
)
服务熔断的流程图
官网的流程图:
步骤说明:
1、创建 HystrixCommand(用在依赖的服务返回单个操作结果的时候) 或 HystrixObserableCommand(用在依赖的服务返回多个操作结果的时候) 对象。
2、命令执行。其中 HystrixComand 实现了下面前两种执行方式;而 HystrixObservableCommand 实现了后两种执行方式:execute():同步执行,从依赖的服务返回一个单一的结果对象, 或是在发生错误的时候抛出异常queue():异步执行, 直接返回 一个Future对象, 其中包含了服务执行结束时要返回的单一结果对象。observe():返回 Observable 对象,它代表了操作的多个结果,它是一个 Hot Obserable(不论 “事件源” 是否有 “订阅者”,都会在创建后对事件进行发布,所以对于 Hot Observable 的每一个 “订阅者” 都有可能是从 “事件源” 的中途开始的,并可能只是看到了整个操作的局部过程)。toObservable(): 同样会返回 Observable 对象,也代表了操作的多个结果,但它返回的是一个Cold Observable(没有 “订阅者” 的时候并不会发布事件,而是进行等待,直到有 “订阅者” 之后才发布事件,所以对于 Cold Observable 的订阅者,它可以保证从一开始看到整个操作的全部过程)。
3、若当前命令的请求缓存功能是被启用的, 并且该命令缓存命中, 那么缓存的结果会立即以 Observable 对象的形式 返回。
4、检查断路器是否为打开状态。如果断路器是打开的,那么Hystrix不会执行命令,而是转接到 fallback 处理逻辑(第 8 步);如果断路器是关闭的,检查是否有可用资源来执行命令(第 5 步)。
5、线程池/请求队列/信号量是否占满。如果命令依赖服务的专有线程池和请求队列,或者信号量(不使用线程池的时候)已经被占满, 那么 Hystrix 也不会执行命令, 而是转接到 fallback 处理逻辑(第8步)。
6、Hystrix 会根据我们编写的方法来决定采取什么样的方式去请求依赖服务。HystrixCommand.run() :返回一个单一的结果,或者抛出异常。HystrixObservableCommand.construct(): 返回一个Observable 对象来发射多个结果,或通过 onError 发送错误通知。
7、Hystrix会将 “成功”、“失败”、“拒绝”、“超时” 等信息报告给断路器, 而断路器会维护一组计数器来统计这些数据。断路器会使用这些统计数据来决定是否要将断路器打开,来对某个依赖服务的请求进行 “熔断/短路”。
8、当命令执行失败的时候, Hystrix 会进入 fallback 尝试回退处理, 我们通常也称该操作为 “服务降级”。而能够引起服务降级处理的情况有下面几种:第4步: 当前命令处于"熔断/短路"状态,断路器是打开的时候。第5步: 当前命令的线程池、 请求队列或 者信号量被占满的时候。第6步:HystrixObservableCommand.construct() 或 HystrixCommand.run() 抛出异常的时候。
9、当Hystrix命令执行成功之后, 它会将处理结果直接返回或是以Observable 的形式返回。
注意:
如果我们没有为命令实现降级逻辑或者在降级处理逻辑中抛出了异常, Hystrix 依然会返回一个 Observable 对象, 但是它不会发射任何结果数据,而是通过 onError 方法通知命令立即中断请求,并通过onError()方法将引起命令失败的异常发送给调用者。
熔断类型
- 熔断打开:请求不再进行调用当前服务,内部设置时钟一般为MTTR(平均故障处理时间),当打开时长达到所设时钟则进入半熔断状态
- 熔断关闭: 熔断关闭不会对服务进行熔断
- 熔断半开: 部分请求根据规则调用当前服务,如果请求成功且符合规则则认为当前服务恢复正常,关闭熔断
断路器打开之后我们的业务代码会怎么调用呢?
1:再有请求调用的时候,将不会调用主逻辑,而是直接调用降级fallback。通过断路器,实现了自动地发现错误并将降级逻辑切换为主逻辑,减少响应延迟的效果。
2:原来的主逻辑要如何恢复呢?
对于这一问题,hystrix也为我们实现了自动恢复功能。当断路器打开,对主逻辑进行熔断之后,hystrix会启动一个休眠时间窗,在这个时间窗内,降级逻辑是临时的成为主逻辑,当休眠时间窗到期,断路器将进入半开状态,释放一次请求到原来的主逻辑上,如果此次请求正常返回,那么断路器将继续闭合,主逻辑恢复,如果这次请求依然有问题,断路器继续进入打开状态,休眠时间窗重新计时。
服务限流
Hystrix的服务限流做的并不怎么好,后面我们会整合alibaba的Sentinel,