(七)机器学习 - 散点图

散点图(Scatter Plot)是一种用于展示两个变量之间关系的图表类型。它通过在二维平面上绘制点来表示数据的分布情况,每个点的横坐标(x轴)和纵坐标(y轴)分别对应数据集中的两个变量的值。散点图的主要目的是观察和分析两个变量之间是否存在某种相关性,例如正相关、负相关或无相关。

 

散点图的一些关键特点: 

  1. 数据点:每个数据点在图表上的位置由其对应的两个变量值决定。

  2. 变量关系:通过观察数据点的分布模式,可以判断两个变量之间是否存在相关性。如果数据点大致沿着一条直线分布,这可能表明两个变量之间存在线性关系。

  3. 趋势和模式:散点图可以揭示数据的趋势和模式,如点的分布是否集中、分散,是否存在聚集区域或异常值。

  4. 正相关和负相关

    • 正相关:如果一个变量的值增加时,另一个变量的值也倾向于增加,这种关系称为正相关。
    • 负相关:如果一个变量的值增加时,另一个变量的值倾向于减少,这种关系称为负相关。
  5. 无相关:如果数据点在图表上随机分布,没有明显的模式,这可能表明两个变量之间没有明显的相关性。

  6. 异常值:散点图可以直观地显示异常值,即那些与其他数据点明显偏离的点。

  7. 多变量分析:在三维空间中,可以使用三维散点图来展示三个变量之间的关系。

1、使用Python 的Matplotlib 模块绘制散点图:

// 它需要两个长度相同的数组,一个数组用于 x 轴的值,另一个数组用于 y 轴的值
import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)
plt.show()

结果:

 

2、随机数据分布 

在机器学习中,数据集可以包含成千上万甚至数百万个值。

测试算法时,您可能没有真实的数据,您可能必须使用随机生成的值。

实例:

创建两个数组,它们都填充有来自正态数据分布的 1000 个随机数。

第一个数组的平均值设置为 5.0,标准差为 1.0。

第二个数组的平均值设置为 10.0,标准差为 2.0:

// 有 1000 个点的散点图:
import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 1000)
y = numpy.random.normal(10.0, 2.0, 1000)

plt.scatter(x, y)
plt.show()

结果: 

 

散点图在各个领域中都有广泛的应用,包括经济学、社会学、生物学、工程学和医学等,它们是探索变量之间关系的重要工具。通过散点图,研究者可以直观地观察数据的分布特征,为进一步的统计分析提供初步的线索。 

END. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

**之火

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值