目录
例4:LeetCode215. 数组中的第K个最大元素(easy)
预备知识:
栈Stack:(先进先出)
队列Queue:(先进后出)
堆:具体Python实现讲解https://blog.csdn.net/qq_35883464/article/details/99410423
例1:LeetCode225. 用队列实现栈(easy)
使用队列实现栈的下列操作:
push(x) -- 元素 x 入栈
pop() -- 移除栈顶元素
top() -- 获取栈顶元素
empty() -- 返回栈是否为空
注意:你只能使用队列的基本操作-- 也就是 push to back, peek/pop from front, size, 和 is empty 这些操作是合法的。
你所使用的语言也许不支持队列。 你可以使用 list 或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
你可以假设所有操作都是有效的(例如, 对一个空的栈不会调用 pop 或者 top 操作)。
思路:
代码:
class MyStack:
def __init__(self):
"""
Initialize your data structure here.
"""
from collections import deque
self.q = deque()
def push(self, x: int) -> None:
self.q.append(x)
for _ in range(len(self.q)-1):
self.q.append(self.q.popleft())
def pop(self) -> int:
return self.q.popleft()
def top(self) -> int:
"""
Get the top element.
"""
return self.q[0]
def empty(self) -> bool:
"""
Returns whether the stack is empty.
"""
return not len(self.q)
例2:LeetCode232. 用栈实现队列(easy)
使用栈实现队列的下列操作:
push(x) -- 将一个元素放入队列的尾部。
pop() -- 从队列首部移除元素。
peek() -- 返回队列首部的元素。
empty() -- 返回队列是否为空。
示例:MyQueue queue = new MyQueue();
queue.push(1);
queue.push(2);
queue.peek(); // 返回 1
queue.pop(); // 返回 1
queue.empty(); // 返回 false说明:
你只能使用标准的栈操作 -- 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)。
思路:
思路:
class MyQueue:
def __init__(self):
"""
Initialize your data structure here.
"""
self.stack1 = []
self.stack2 = []
def push(self, x: int) -> None:
"""
Push element x to the back of queue.
"""
if self.stack1 == None:
self.stack1.append(x)
else:
while self.stack1:
self.stack2.append(self.stack1.pop(-1))
self.stack1.append(x)
while self.stack2:
self.stack1.append(self.stack2.pop(-1))
def pop(self) -> int:
"""
Removes the element from in front of queue and returns that element.
"""
return self.stack1.pop()
def peek(self) -> int:
"""
Get the front element.
"""
if self.stack1:
return self.stack1[-1]
def empty(self) -> bool:
"""
Returns whether the queue is empty.
"""
return len(self.stack1) == 0
例3:LeetCode155. 最小栈(easy)
设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈。
push(x) -- 将元素 x 推入栈中。
pop() -- 删除栈顶的元素。
top() -- 获取栈顶元素。
getMin() -- 检索栈中的最小元素。
示例:MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
分析:
思路:
代码:
class MinStack:
def __init__(self):
"""
initialize your data structure here.
"""
self.stack = []
self.minstack = []
def push(self, x: int) -> None:
self.stack.append(x)
if not self.minstack or x < self.minstack[-1]:
self.minstack.append(x)
else:
self.minstack.append(self.minstack[-1])
def pop(self) -> None:
if self.stack:
self.minstack.pop()
return self.stack.pop()
def top(self) -> int:
return self.stack[-1]
def getMin(self) -> int:
if self.minstack:
return self.minstack[-1]
例4:LeetCode215. 数组中的第K个最大元素(easy)
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
代码:
class Solution:
def findKthLargest(self, nums: List[int], k: int) -> int:
import heapq
return heapq.nlargest(k, nums)[-1]
例5:LeetCode295. 数据流的中位数(hard)
中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例:addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
分析:
思路:
具体情况:
代码:
import heapq
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.big_queue = []
self.small_queue = []
def addNum(self, num: int) -> None:
if not self.big_queue:
heapq.heappush(self.big_queue, (-num, num))
#因为 Python 中的堆默认是小顶堆,所以要传入一个 tuple,用于比较的元素需是相反数,才能模拟出大顶堆的效果
return
if len(self.big_queue) == len(self.small_queue):
if num < self.big_queue[0][1]:
heapq.heappush(self.big_queue, (-num, num))
else:
heapq.heappush(self.small_queue, num)
elif len(self.big_queue) > len(self.small_queue):
if num < self.big_queue[0][1]:
_, big_queue_top = heapq.heappop(self.big_queue)
heapq.heappush(self.small_queue, big_queue_top)
heapq.heappush(self.big_queue, (-num, num))
else:
heapq.heappush(self.small_queue, num)
elif len(self.big_queue) < len(self.small_queue):
if num < self.small_queue[0]:
heapq.heappush(self.big_queue, (-num, num))
else:
small_queue_top = heapq.heappop(self.small_queue)
heapq.heappush(self.big_queue, (-small_queue_top, small_queue_top))
heapq.heappush(self.small_queue, num)
def findMedian(self) -> float:
if len(self.big_queue) == len(self.small_queue):
return (self.big_queue[0][1] + self.small_queue[0]) / 2
elif len(self.big_queue) > len(self.small_queue):
return self.big_queue[0][1]
return self.small_queue[0]