牛客寒假算法集训营1 小a的学期(欧拉筛 组合数)

容易推得答案就是C(2n,n)-C(2n,n+k),然而数据不保证p为质数,这样一来就不能直接逆元求组合数了。

我们可以用线性筛预处理出每个数的最小质因子,对于每个数将其分解成质数乘积的形式,最后统计每个质数的贡献。

此题并不难,值得记录一下的原因是这题质因数分解相消的方法比较巧妙,仅需记录最小质因数即可。

代码如下

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e6+5;
int prime[maxn],mp[maxn];
bool v[maxn];
int tot;
int num[maxn];
long long mod;
void euler()
{
    for(int i=2;i<maxn;i++)
    {
        if(!v[i])
            prime[++tot]=i,mp[i]=tot;
        for(int j=1;j<=tot&&(i*prime[j]<maxn);j++)
        {
            v[i*prime[j]]=1;
            mp[i*prime[j]]=j;
            if(i%prime[j]==0)
                break;
        }
    }
}
long long mpow(long long a,long long b)
{
    long long res=1,base=a;
    while(b)
    {
        if(b&1)
            res=res*base%mod;
        base=base*base%mod;
        b>>=1;
    }
    return res;
}
void func(int x,int op)
{
    while(x!=1)
        num[mp[x]]+=op,x/=prime[mp[x]];
}
long long getans()
{
    long long res=1;
    for(int i=1;i<=tot;i++)
    {
        if(num[i])
            res=(res*mpow(prime[i],num[i]))%mod;
    }
    return res;
}
int main()
{
    int n,k;
    cin>>n>>k>>mod;
    euler();
    for(int i=n+1;i<=2*n;i++)
        func(i,1);
    for(int i=1;i<=n;i++)
        func(i,-1);
    long long ans=getans();
    memset(num,0,sizeof num);
    for(int i=n+k+1;i<=2*n;i++)
        func(i,1);
    for(int i=1;i<=n-k;i++)
        func(i,-1);
    ans=(ans-getans()+mod)%mod;
    cout<<ans<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值