使用conda可以在电脑上创建很多套相互隔离的Python环境,命令如下:
创建环境
创建一个名为deeplearning的环境,python版本为3.7
conda create --name deeplearning python=3.7
查看版本
conda --version
切换环境
切换到deeplearning环境
conda activate deeplearning
如果切换报错可以先试试source activate base
退出当前环境
conda deactivate
列出所有已创环境
conda env list
删除环境
删除deeplearning环境
conda remove --name deeplearning --all
仅删除deeplearning环境里的requests依赖
conda remove --name deeplearning requests
查看当前conda环境安装的所有依赖包
conda list
安装新的依赖包
安装requests依赖
conda install requests
导出Conda环境
conda list --explicit > /tmp/export.txt
关闭terminal默认打开
安装Conda后,每次打开终端都会有一个(base)这是因为默认进入了conda的base环境,设置不自动进入conda的base环境命令如下:
conda config --set auto_activate_base false
修改镜像源
在conda 命令窗口中输入命令创建永久源。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
查看当前源命令
conda config --show channels
conda config --get channels
修改成成默认源
conda config --remove-key channels
删除某镜像源
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
最佳实践
示例:安装jsonpath_ng
1、确保conda环境是
1、清理Conda环境
conda clean --all
会清理以下文件:
- 未使用的包的缓存文件
- 已删除环境的剩余文件
- 已下载但没有被任何包使用的包文件
2、更换源
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/msys2/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/menpo/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/pytorch/
还有一个永久更换源的操作(推荐):
更新pip
# 更新当前安装的 pip 到最新版本。
pip install pip -U
# 永久替换全局地址,默认官方为:https://pypi.org/simple
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
3、安装
conda install jsonpath-ng
4、离线安装
如果实在安装不上,则可以离线安装,在anaconda仓库下载离线包
conda install /path_to_jsonpath_package/jsonpath-<version>.tar.bz2
将 /path_to_jsonpath_package/
替换为文件的实际路径,<version>
替换为包的版本号。
5、在激活conda后,使用pip install
,和conda install
效果相同
6、列出可供安装的版本
pip install protobuf== --upgrade --dry-run
pip install protobuf==4.24.4
7、修复损坏的依赖、重新安装依赖库:
pip install --force-reinstall tensorflow