conda常用命令

使用conda可以在电脑上创建很多套相互隔离的Python环境,命令如下:

创建环境

创建一个名为deeplearning的环境,python版本为3.7

conda create --name deeplearning python=3.7

查看版本

conda --version

切换环境

切换到deeplearning环境

conda activate deeplearning

如果切换报错可以先试试source activate base

退出当前环境

conda deactivate

列出所有已创环境

conda env list

删除环境

删除deeplearning环境

conda remove --name deeplearning --all

仅删除deeplearning环境里的requests依赖

conda remove --name deeplearning requests

查看当前conda环境安装的所有依赖包

conda list

安装新的依赖包

安装requests依赖

conda install requests

导出Conda环境

conda list --explicit > /tmp/export.txt

关闭terminal默认打开

安装Conda后,每次打开终端都会有一个(base)这是因为默认进入了conda的base环境,设置不自动进入conda的base环境命令如下:

conda config --set auto_activate_base false

修改镜像源

在conda 命令窗口中输入命令创建永久源。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

查看当前源命令

conda config --show channels 
conda config --get channels

修改成成默认源

conda config --remove-key channels

删除某镜像源

conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

最佳实践

示例:安装jsonpath_ng

1、确保conda环境是
1、清理Conda环境

conda clean --all

会清理以下文件:

  • 未使用的包的缓存文件
  • 已删除环境的剩余文件
  • 已下载但没有被任何包使用的包文件

2、更换源

conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/msys2/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/menpo/
conda config --add channels https://mirrors.aliyun.com/anaconda/cloud/pytorch/

还有一个永久更换源的操作(推荐):
更新pip

# 更新当前安装的 pip 到最新版本。
pip install pip -U
# 永久替换全局地址,默认官方为:https://pypi.org/simple
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

3、安装

conda install jsonpath-ng

4、离线安装

如果实在安装不上,则可以离线安装,在anaconda仓库下载离线包

conda install /path_to_jsonpath_package/jsonpath-<version>.tar.bz2

/path_to_jsonpath_package/ 替换为文件的实际路径,<version> 替换为包的版本号。

5、在激活conda后,使用pip install ,和conda install效果相同

6、列出可供安装的版本

pip install protobuf== --upgrade --dry-run
pip install protobuf==4.24.4

7、修复损坏的依赖、重新安装依赖库:

pip install --force-reinstall tensorflow
### 如何使用 Conda 创建新环境 通过 `conda` 工具可以轻松管理多个独立的 Python 环境。以下是关于如何使用 `conda create` 命令来安装和配置新环境的具体说明。 #### 1. 创建新的 Conda 环境 要创建一个新的 Conda 环境,可以运行以下命令: ```bash conda create --name myenv python=3.9 ``` 上述命令会创建一个名为 `myenv` 的新环境,并指定该环境中使用的 Python 版本为 3.9[^1]。 如果需要额外安装其他包,则可以在同一命令中添加这些包的名字。例如: ```bash conda create --name myenv python=3.9 numpy pandas matplotlib ``` #### 2. 激活已创建的环境 一旦环境被成功创建,可以通过以下命令激活它: ```bash conda activate myenv ``` 此操作会使当前终端切换到刚刚创建的新环境 `myenv` 下工作。 #### 3. 配置 environment.yml 文件 为了更方便地管理和分享项目的依赖关系,推荐使用 `environment.yml` 文件定义所需的软件及其版本号。下面是一个典型的 `environment.yml` 文件示例: ```yaml name: myenv channels: - defaults dependencies: - python=3.9 - numpy - pandas - matplotlib ``` 保存以上内容至文件后,在相同目录下执行如下命令即可基于 `.yml` 文件重新构建整个开发环境: ```bash conda env create -f environment.yml ``` 当团队成员之间传递此类 YAML 描述文档时,接收方只需下载对应的脚本并重复上面提到的过程就能获得完全一致的技术栈支持。 #### 4. 解决可能遇到的问题 有时可能会因为网络原因或者其他因素导致无法正常完成某些资源获取动作而报错。比如有用户反馈说他们在尝试建立基础镜像的时候遇到了写权限不足的情况:“base environment : /home/oracle/anaconda3 (writable)” 这种提示意味着虽然路径存在但是实际并没有足够的权利去修改那个位置下的东西[^2] 。此时建议检查是否有管理员身份或者更改目标存储地址避开受限区域再试一次。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值