图像分类
谁偷了我的酒窝
这个作者很懒,什么都没留下…
展开
-
《CROSS-DOMAIN FEW-SHOT CLASSIFICATION VIA LEARNED FEATURE-WISE TRANSFORMATION》论文总结
这篇文章基于小样本分类,在度量方法的基础上做出了一些改进论文代码:https://github.com/hytseng0509/CrossDomainFewShot1、基于度量的方法要素:特征编码器和度量函数问题算法过程:主要有两次迭代更新,第一次更新利用已知域数据对度量模型参数的更新,也既是特征编码器和模型函数的参数θe\theta_eθe和θm\theta_mθm第二次更新是利用未知域对变换层参数的更新,也既是θf\theta_fθf...原创 2020-07-19 10:31:08 · 1188 阅读 · 0 评论 -
Pytorch:利用ResNet预训练模型对CIFAR数据集分类
最近看了常用的图像分类网络,分别使用迁移学习和直接构建模型自己训练。找一个模型把使用过程写下来吧。文章目录1、加载数据集并预处理2、加载模型和预训练权重文件3. 修改网络模型4. 设置网络参数5. 训练6、测试1、加载数据集并预处理batch_size = 50device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# data pre-treatmentdata_transform = { ".原创 2020-06-04 23:50:13 · 7620 阅读 · 5 评论