目标检测
人工智能
小火箭丶
求实求真
展开
-
Triplet loss& 交叉熵loss
原创 2021-10-18 11:12:57 · 493 阅读 · 0 评论 -
L2norm
这个方法在SSD里面用到,主要是因为不同尺度的feature的大小差的比较多,所以需要进行norm,实现细节如下:classL2Norm(nn.Module):#参数:输入特征图的通道数,缩放像素值到达的范围def__init__(self,n_channels,scale):super(L2Norm,self).__init__()self.n_channels=n_channelsself.gamma=scal...原创 2021-07-27 21:39:58 · 723 阅读 · 0 评论 -
目标检测-图像数据库
https://zhuanlan.zhihu.com/p/76244704https://blog.csdn.net/u010429424/article/details/72171476#gesture原创 2021-07-26 17:44:08 · 110 阅读 · 0 评论 -
目标检测-参考链接
https://blog.csdn.net/weixin_44791964/article/details/104981486SSDhttps://blog.csdn.net/weixin_44791964/article/details/105310627 YOLOV3https://blog.csdn.net/weixin_44791964/article/details/105739918 Faster-rcnnhttps://blog.csdn.net/weixin_4479196...原创 2021-07-26 10:08:57 · 134 阅读 · 0 评论 -
目标检测-Faster-rcnn简述
1、input 600x600x32、feature map 38x38x10243、Conv 3x3 1x118=9x2 物体还是背景 9为每个网格点的先验框个数4、Conv 3x3 1x136=9x4 先验框坐标 9为每个网格点的先验框个数5、Proposal 筛选一部分建议框 双阶段6、利用建议框在Feature Map 中去截取7、ROI 统一截取建议框图像的大小8、然后分别进行回归与分类回归既矫正...原创 2021-07-04 16:16:27 · 160 阅读 · 0 评论 -
目标检测-YOLO V3 主干网络结构
Darknet-53 特征提取13 x 13 每个网格点3个先验框26 x 26 每个网格点3个先验框52 x 52 每个网格点3个先验框13 13 75 -> 13 13 3 20(类别概率)1(是否有物体) 4(先验框坐标)上采样是图像维度的堆叠与Resnet的残差图像融合是不同的。其它操作和上一层的操作一样之后 完成分类和先验框的矫正。...原创 2021-07-04 14:43:21 · 296 阅读 · 0 评论 -
目标检测-SSD主干网络
1、RESIZE图像到300 x 300 x 32、原始VGG的卷积和池化都保存下来、后续的三个全连接层被转换为了conv6-2 conv-7-2 conv8-2 con9-2 用于提取更多的特征窗口300,300,3 -> 300,300,64 -> 300,300,64 -> 150,150,64 -> 150,150,128 -> 150,150,128 -> 75,75,128 -> 75,75,256 -> 75,75,256 -> .原创 2021-06-25 16:01:57 · 343 阅读 · 0 评论